OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7399–7415

High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes

Barry Vuong, Anthony M.D. Lee, Timothy W.H. Luk, Cuiru Sun, Stephen Lam, Pierre Lane, and Victor X.D. Yang  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7399-7415 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (7988 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report a technique for blood flow detection using split spectrum Doppler optical coherence tomography (ssDOCT) that shows improved sensitivity over existing Doppler OCT methods. In ssDOCT, the Doppler signal is averaged over multiple sub-bands of the interferogram, increasing the SNR of the Doppler signal. We explore the parameterization of this technique in terms of number of sub-band windows, width and overlap of the windows, and their effect on the Doppler signal to noise in a flow phantom. Compared to conventional DOCT, ssDOCT processing has increased flow sensitivity. We demonstrate the effectiveness of ssDOCT in-vivo for intravascular flow detection within a porcine carotid artery and for microvascular vessel detection in human pulmonary imaging, using rotary catheter probes. To our knowledge, this is the first report of visualizing in-vivo Doppler flow patterns adjacent to stent struts in the carotid artery.

© 2014 Optical Society of America

OCIS Codes
(120.5050) Instrumentation, measurement, and metrology : Phase measurement
(170.3880) Medical optics and biotechnology : Medical and biological imaging
(170.4500) Medical optics and biotechnology : Optical coherence tomography

ToC Category:
Medical Optics and Biotechnology

Original Manuscript: January 3, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 12, 2014
Published: March 24, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Barry Vuong, Anthony M.D. Lee, Timothy W.H. Luk, Cuiru Sun, Stephen Lam, Pierre Lane, and Victor X.D. Yang, "High speed, wide velocity dynamic range Doppler optical coherence tomography (Part IV): split spectrum processing in rotary catheter probes," Opt. Express 22, 7399-7415 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. G. Tearney, S. Boppart, B. Bouma, M. Brezinski, N. Weissman, J. Southern, J. Fujimoto, “Scanning single-mode fiber optic catheter-endoscope for optical coherence tomography,” Opt. Lett. 21, 543–545 (1996). [CrossRef] [PubMed]
  2. K. H. Cheng, C. Sun, B. Vuong, K. K. Lee, A. Mariampillai, T. R. Marotta, J. Spears, W. J. Montanera, P. R. Herman, T.-R. Kiehl et al., “Endovascular optical coherence tomography intensity kurtosis: visualization of vasa vasorum in porcine carotid artery,” Biomed. Opt. Express 3, 388–399 (2012). [CrossRef] [PubMed]
  3. B. J. Vakoc, M. Shishko, S. H. Yun, W.-Y. Oh, M. J. Suter, A. E. Desjardins, J. A. Evans, N. S. Nishioka, G. J. Tearney, B. E. Bouma, “Comprehensive esophageal microscopy by using optical frequency–domain imaging (with video),” Gastrointestinal endoscopy 65, 898–905 (2007). [CrossRef]
  4. A. M. Lee, K. Ohtani, C. MacAulay, A. McWilliams, T. Shaipanich, V. X. Yang, S. Lam, P. Lane, “In vivo lung microvasculature visualized in three dimensions using fiber-optic color doppler optical coherence tomography,” J. Biomed. Opt. 18, 050501 (2013). [CrossRef]
  5. C. Sun, F. Nolte, K. H. Cheng, B. Vuong, K. K. Lee, B. A. Standish, B. Courtney, T. R. Marotta, A. Mariampillai, V. X. Yang, “In vivo feasibility of endovascular doppler optical coherence tomography,” Biomed. Opt. Express 3, 2600–2610 (2012). [CrossRef] [PubMed]
  6. X. Li, T. H. Ko, J. G. Fujimoto, “Intraluminal fiber-optic doppler imaging catheter for structural and functional optical coherence tomography,” Opt. Lett. 26, 1906–1908 (2001). [CrossRef]
  7. M. J. McCarthy, I. M. Loftus, M. M. Thompson, L. Jones, N. J. London, P. R. Bell, A. R. Naylor, N. P. Brindle, “Angiogenesis and the atherosclerotic carotid plaque: an association between symptomatology and plaque morphology,” J. Vascular Surgery 30, 261–268 (1999). [CrossRef]
  8. N. F. Voelkel, I. S. Douglas, M. Nicolls, “Angiogenesis in chronic lung disease,” CHEST Journal 131, 874–879 (2007). [CrossRef]
  9. A. Yuan, D.-B. Chang, C.-J. Yu, S. Kuo, K. Luh, P. Yang, “Color doppler sonography of benign and malignant pulmonary masses.” AJR. American journal of roentgenology 163, 545–549 (1994). [CrossRef] [PubMed]
  10. B. Vakoc, S. Yun, J. De Boer, G. Tearney, B. Bouma, “Phase-resolved optical frequency domain imaging,” Opt. Express 13, 5483–5493 (2005). [CrossRef] [PubMed]
  11. B. Braaf, K. A. Vermeer, V. A. D. Sicam, E. van Zeeburg, J. C. van Meurs, J. F. de Boer, “Phase-stabilized optical frequency domain imaging at 1-μ m for the measurement of blood flow in the human choroid,” Opt. Express 19, 20886–20903 (2011). [CrossRef] [PubMed]
  12. Y.-J. Hong, S. Makita, F. Jaillon, M. J. Ju, E. J. Min, B. H. Lee, M. Itoh, M. Miura, Y. Yasuno, “High-penetration swept source doppler optical coherence angiography by fully numerical phase stabilization,” Opt. Express 20, 2740–2760 (2012). [CrossRef] [PubMed]
  13. B. White, M. Pierce, N. Nassif, B. Cense, B. Park, G. Tearney, B. Bouma, T. Chen, J. de Boer, “In vivo dynamic human retinal blood flow imaging using ultra-high-speed spectral domain optical coherence tomography,” Opt. Express 11, 3490–3497 (2003). [CrossRef] [PubMed]
  14. G. van Soest, J. G. Bosch, A. F. van der Steen, “Azimuthal registration of image sequences affected by nonuniform rotation distortion,” IEEE Trans. Info.Tech. Biomed. 12, 348–355 (2008). [CrossRef]
  15. V.X.D. Yang, M. L. Gordon, B. Qi, J. Pekar, S. Lo, E. Seng-Yue, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part i): System design, signal processing, and performance,” Opt. Express 11, 794–809 (2003). [CrossRef] [PubMed]
  16. H. Ren, X. Li, “Clutter rejection filters for optical doppler tomography,” Opt. Express 14, 6103–6112 (2006). [CrossRef] [PubMed]
  17. D. W. Cadotte, A. Mariampillai, A. Cadotte, K. K. Lee, T.-R. Kiehl, B. C. Wilson, M. G. Fehlings, V. X. Yang, “Speckle variance optical coherence tomography of the rodent spinal cord: in vivo feasibility,” Biomed. Opt. Express 3, 911–919 (2012). [CrossRef] [PubMed]
  18. V.X.D. Yang, M. L. Gordon, E. Seng-Yue, S. Lo, B. Qi, J. Pekar, A. Mok, B. C. Wilson, A. I. Vitkin, “High speed, wide velocity dynamic range doppler optical coherence tomography (part ii): Imaging in vivo cardiac dynamics of xenopus laevis,” Opt. Express 11, 1650–1658 (2003). [CrossRef] [PubMed]
  19. J. A. Jensen, Estimation of blood velocities using ultrasound: a signal processing approach (Cambridge University Press, 1996).
  20. R. S. Cobbold, Foundations of biomedical ultrasound (Oxford University Press on Demand, 2007).
  21. S. Yun, G. Tearney, J. De Boer, B. Bouma, “Motion artifacts in optical coherence tomography with frequency-domain ranging,” Opt. Express 12, 2977–2998 (2004). [CrossRef] [PubMed]
  22. E. W. Beasley, H. R. Ward, “A quantitative analysis of sea clutter decorrelation with frequency agility,” Aerospace and Electronic Systems, IEEE Transactions on pp. 468–473 (1968). [CrossRef]
  23. P. Karpur, O. J. Canelones, “Split spectrum processing: a new filtering approach for improved signal-to-noise ratio enhancement of ultrasonic signals,” Ultrasonics 30, 351–357 (1992). [CrossRef]
  24. G. van Soest, M. Villiger, E. Regar, G. J. Tearney, B. E. Bouma, A. F. van der Steen, “Frequency domain multiplexing for speckle reduction in optical coherence tomography,” J. Biomed. Opt. 17, 0760181–0760187 (2012). [CrossRef]
  25. Y. Jia, O. Tan, J. Tokayer, B. Potsaid, Y. Wang, J. J. Liu, M. F. Kraus, H. Subhash, J. G. Fujimoto, J. Hornegger, D. Haung, “Split-spectrum amplitude-decorrelation angiography with optical coherence tomography,” Opt. Express 20, 4710–4725 (2012). [CrossRef] [PubMed]
  26. M. Wojtkowski, A. Kowalczyk, R. Leitgeb, A. Fercher, “Full range complex spectral optical coherence tomography technique in eye imaging,” Opt. Lett. 27, 1415–1417 (2002). [CrossRef]
  27. V. X. Yang, M. Gordon, S.-j. Tang, N. Marcon, G. Gardiner, B. Qi, S. Bisland, E. Seng-Yue, S. Lo, J. Pekar et al., “High speed, wide velocity dynamic range doppler optical coherence tomography (part iii): in vivo endoscopic imaging of blood flow in the rat and human gastrointestinal tracts,” Opt. Express 11, 2416–2424 (2003). [CrossRef] [PubMed]
  28. K. K. Lee, A. Mariampillai, J. X. Yu, D. W. Cadotte, B. C. Wilson, B. A. Standish, V. X. Yang, “Real-time speckle variance swept-source optical coherence tomography using a graphics processing unit,” Biomedical Opt. Express 3, 1557–1564 (2012). [CrossRef]
  29. S. Makita, F. Jaillon, I. Jahan, Y. Yasuno, “Noise statistics of phase-resolved optical coherence tomography imaging: single-and dual-beam-scan doppler optical coherence tomography,” Opt. Express 22, 4830–4848 (2014). [CrossRef]
  30. S. Yazdanfar, C. Yang, M. Sarunic, J. Izatt, “Frequency estimation precision in doppler optical coherence tomography using the cramer-rao lower bound,” Opt. Express 13, 410–416 (2005). [CrossRef] [PubMed]
  31. B. Park, M. C. Pierce, B. Cense, S.-H. Yun, M. Mujat, G. Tearney, B. Bouma, J. de Boer, “Real-time fiber-based multi-functional spectral-domain optical coherence tomography at 1.3 μ m,” Opt. Express 13, 3931–3944 (2005). [CrossRef] [PubMed]
  32. V. X. Yang, M. L. Gordon, A. Mok, Y. Zhao, Z. Chen, R. S. Cobbold, B. C. Wilson, I. Alex Vitkin, “Improved phase-resolved optical doppler tomography using the kasai velocity estimator and histogram segmentation,” Opt. Commun. 208, 209–214 (2002). [CrossRef]
  33. D. Rockwell, “Vortex-body interactions,” Annual review of fluid mechanics 30, 199–229 (1998). [CrossRef]
  34. J. E. Moore, J. L. Berry, “Fluid and solid mechanical implications of vascular stenting,” Annals of biomedical engineering 30, 498–508 (2002). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited