OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7416–7421

An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7416-7421 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (776 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



An excited state Faraday anomalous dispersion optical filter (ES-FADOF) working at the optical communication wavelength (1.5 μm) is realized. Unlike the usual ES-FADOF schemes using an external frequency stabilization, an internal frequency stabilization scheme is proposed and the working atoms inside the filter are adopted as the reference. A particular cross line of multiple transitions is used for the frequency stabilization for the pump laser and thus, a higher pump efficiency is achieved. For example, compared with previous ES-FADOF schemes, this method can increase the transmittance from 10% to 60% at 100 °C. Moreover, in this scheme, the external frequency stabilization is not necessary and the volume of the atomic filter can be reduced. This simplifies the whole structure and a compact ES-FADOF can thus be realized.

© 2014 Optical Society of America

OCIS Codes
(060.4510) Fiber optics and optical communications : Optical communications
(120.2440) Instrumentation, measurement, and metrology : Filters
(230.2240) Optical devices : Faraday effect
(300.6210) Spectroscopy : Spectroscopy, atomic
(140.3425) Lasers and laser optics : Laser stabilization

ToC Category:
Lasers and Laser Optics

Original Manuscript: January 3, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 13, 2014
Published: March 24, 2014

Longfei Yin, Bin Luo, Anhong Dang, and Hong Guo, "An atomic optical filter working at 1.5 μm based on internal frequency stabilized laser pumping," Opt. Express 22, 7416-7421 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Dick, T. M. Shay, “Ultrahigh-noise rejection optical filter,” Opt. Lett. 16, 867–869 (1991). [CrossRef] [PubMed]
  2. J. Menders, K. Benson, S. H. Bloom, C. S. Liu, E. Korevaar, “Ultranarrow line filtering using a Cs Faraday filter at 852 nm,” Opt. Lett. 16, 846–848 (1991). [CrossRef] [PubMed]
  3. P. Yeh, “Dispersive magnetooptic filters,” Appl. Opt. 21, 2069–2075 (1982). [CrossRef] [PubMed]
  4. J. Menders, P. Searcy, K. Roff, E. Korevaar, “Blue cesium Faraday and Voigt magneto-optic atomic line filters,” Opt. Lett. 17, 1388–1390 (1992). [CrossRef] [PubMed]
  5. H. Chen, C. Y. She, P. Searcy, E. Korevaar, “Sodium-vapor dispersive Faraday filter,” Opt. Lett. 18, 1019– 1021 (1993). [CrossRef] [PubMed]
  6. E. T. Dressler, A. E. Laux, R. I. Billmers, “Theory and experiment for the anomalous Faraday effect in potassium,” J. Opt. Soc. Am. B 13, 1849–1858 (1996). [CrossRef]
  7. Y. C. Chan, J. A. Gelbwachs, “A Fraunhofer-wavelength magnetooptic atomic filter at 422.7 nm,” IEEE J. Quantum Electron. 29, 2379–2384 (1993). [CrossRef]
  8. L. Chen, L. S. Alvarez, B. Yin, T. M. Shay, “High-sensitivity direct detection optical communication system that operates in sunlight,” Proc. SPIE 2123, 448–454 (1994). [CrossRef]
  9. C. B. Svec, T. M. Shay, “Doppler shift compensation for spaceborne optical communication using a Faraday anomalous dispersion optical filter (FADOF),” Proc. SPIE 2123, 470–476 (1994). [CrossRef]
  10. J. Tang, Q. Wang, Y. Li, L. Zhang, J. Gan, M. Duan, J. Kong, L. Zheng, “Experimental study of a model digital space optical communication system with new quantum devices,” Appl. Opt. 34, 2619–2622 (1995). [CrossRef]
  11. X. Miao, L. Yin, W. Zhuang, B. Luo, A. Dang, J. Chen, H. Guo, “Note: Demonstration of an external-cavity diode laser system immune to current and temperature fluctuations,” Rev. Sci. Instrum. 82, 086106 (2011). [CrossRef] [PubMed]
  12. H. Chen, M. A. White, D. A. Krueger, C. Y. She, “Daytime mesopause temperature measurements with a sodium-vapor dispersive Faraday filter in a lidar receiver,” Opt. Lett. 21, 1093–1095 (1996). [CrossRef] [PubMed]
  13. C. Fricke-Begemann, M. Alpers, J. Höffner, “Daylight rejection with a new receiver for potassium resonance temperature lidars,” Opt. Lett. 27, 1932–1934 (2002). [CrossRef]
  14. A. Popescu, T. Walther, “On an ESFADOF edge-filter for a range resolved Brillouin-lidar: The high vapor density and high pump intensity regime,” Appl. Phys. B Lasers O 98, 667–675 (2010). [CrossRef]
  15. R. I. Billmers, S. K. Gayen, M. F. Squicciarini, V. M. Contarino, W. J. Scharpf, D. M. Allocca, “Experimental demonstration of an excited-state Faraday filter operating at 532 nm,” Opt. Lett. 20, 106–108 (1995). [CrossRef] [PubMed]
  16. A. Popescu, D. Walldorf, K. Schorstein, T. Walther, “On an excited state Faraday anomalous dispersion optical filter at moderate pump powers for a Brillouin-lidar receiver system,” Opt. Commun. 264, 475–481 (2006). [CrossRef]
  17. L. D. Turner, V. Karaganov, P. J. O. Teubner, R. E. Scholten, “Sub-Doppler bandwidth atomic optical filter,” Opt. Lett. 27, 500–502 (2002). [CrossRef]
  18. Z.-Q. Zhao, M. J. Lefebvre, D. H. Leslie, “Excited state atomic line filters,” US 7,058,110 B2 (2006).
  19. Q. Sun, Y. Hong, W. Zhuang, Z. Liu, J. Chen, “Demonstration of an excited-state Faraday anomalous dispersion optical filter at 1529nm by use of an electrodeless discharge rubidium vapor lamp,” Appl. Phys. Lett. 101, 211102 (2012). [CrossRef]
  20. J. E. Sansonetti, “Wavelengths, transition probabilities, and energy levels for the spectra of rubidium (RbI through RbXXXVII),” J. Phys. Chem. Ref. Data 35, 301–421 (2006). [CrossRef]
  21. L. Weller, T. Dalton, P. Siddons, C. S. Adams, I. G. Hughes, ”Measuring the Stokes parameters for light transmitted by a high-density rubidium vapour in large magnetic fields,” J. Phys. B 45, 055001 (2012). [CrossRef]
  22. K. L. Corwin, Z.-T. Lu, C. F. Hand, R. J. Epstein, C. E. Wieman, “Frequency-stabilized diode laser with the Zeeman shift in an atomic vapor,” Appl. Opt. 37, 3295–3298 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited