OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7422–7433

Evanescent waves in high numerical aperture aplanatic solid immersion microscopy: Effects of forbidden light on subsurface imaging

Abdulkadir Yurt, Aydan Uyar, T. Berkin Cilingiroglu, Bennett B. Goldberg, and M. Selim Ünlü  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7422-7433 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The collection of light at very high numerical aperture allows detection of evanescent waves above the critical angle of total internal reflection in solid immersion lens microscopy. We investigate the effect of such evanescent modes, so-called forbidden light, on the far-field imaging properties of an aplanatic solid immersion microscope by developing a dyadic Green’s function formalism in the context of subsurface semiconductor integrated circuit imaging. We demonstrate that the collection of forbidden light allows for sub-diffraction spatial resolution and substantial enhancement of photon collection efficiency albeit inducing wave-front discontinuities and aberrations.

© 2014 Optical Society of America

OCIS Codes
(110.0180) Imaging systems : Microscopy
(110.1758) Imaging systems : Computational imaging

ToC Category:

Original Manuscript: January 27, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 11, 2014
Published: March 24, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Abdulkadir Yurt, Aydan Uyar, T. Berkin Cilingiroglu, Bennett B. Goldberg, and M. Selim Ünlü, "Evanescent waves in high numerical aperture aplanatic solid immersion microscopy: Effects of forbidden light on subsurface imaging," Opt. Express 22, 7422-7433 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Bianic, A. Allemand, G. Kerrosa, P. Scafidi, D. Renard, “Advanced backside failure analysis in 65nm CMOS technology,” Microelectron. Reliab. 47(9-11), 1550–1554 (2007). [CrossRef]
  2. Y. Zhang, “Design of high-performance supersphere solid immersion lenses,” Appl. Opt. 45(19), 4540–4546 (2006). [CrossRef] [PubMed]
  3. S. H. Goh, C. J. R. Sheppard, A. C. T. Quah, C. M. Chua, L. S. Koh, J. C. H. Phang, “Design considerations for refractive solid immersion lens: Application to subsurface integrated circuit fault localization using laser induced techniques,” Rev. Sci. Instrum. 80(1), 013703 (2009). [CrossRef] [PubMed]
  4. E. Ramsay, K. A. Serrels, M. J. Thomson, A. J. Waddie, M. R. Taghizadeh, R. J. Warburton, D. T. Reid, “Three-dimensional nanoscale subsurface optical imaging of silicon circuits,” Appl. Phys. Lett. 90(13), 131101 (2007). [CrossRef]
  5. F. H. Köklü, S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Subsurface microscopy of integrated circuits with angular spectrum and polarization control,” Opt. Lett. 34(8), 1261–1263 (2009). [CrossRef] [PubMed]
  6. K. A. Serrels, E. Ramsay, R. J. Warburton, D. T. Reid, “Nanoscale optical microscopy in the vectorial focusing regime,” Nature Pho. 2(5), 311–314 (2008). [CrossRef]
  7. A. Yurt, E. Ramsay, F. H. Köklü, C. R. Stockbridge, Y. Lu, M. S. Ünlü, and B. B. Goldberg, “Dual-Phase Interferometric Confocal Imaging for Electrical Signal Modulation Mapping in ICs,” in Proc. of the 38th International Symposium for Testing and Failure Analysis (ASM International, 2012), 172–175 (2012).
  8. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” J. Opt. Soc. Am. 67(12), 1607–1615 (1977). [CrossRef]
  9. L. Novotny, “Allowed and forbidden light in near-field optics. I. A single dipolar light source,” J. Opt. Soc. Am. A 14(1), 91–104 (1997). [CrossRef]
  10. J. Enderlein, M. Böhmer, “Influence of interface-dipole interactions on the efficiency of fluorescence light collection near surfaces,” Opt. Lett. 28(11), 941–943 (2003). [CrossRef] [PubMed]
  11. S. B. Ippolito, S. A. Thorne, M. G. Eraslan, B. B. Goldberg, M. S. Ünlü, Y. Leblebici, “High spatial resolution subsurface thermal emission microscopy,” Appl. Phys. Lett. 84(22), 4529–4531 (2004). [CrossRef]
  12. F. H. Köklü, J. I. Quesnel, A. N. Vamivakas, S. B. Ippolito, B. B. Goldberg, M. S. Unlü, “Widefield subsurface microscopy of integrated circuits,” Opt. Express 16(13), 9501–9506 (2008). [CrossRef] [PubMed]
  13. S. B. Ippolito, B. B. Goldberg, M. S. Ünlü, “Theoretical analysis of numerical aperture increasing lens microscopy,” J. Appl. Phys. 97(5), 053105 (2005). [CrossRef]
  14. R. Chen, K. Agarwal, Y. Zhong, C. J. R. Sheppard, J. C. H. Phang, X. D. Chen, “Complete modeling of subsurface microscopy system based on aplanatic solid immersion lens,” J. Opt. Soc. Am. A 29(11), 2350–2359 (2012). [CrossRef] [PubMed]
  15. R. Chen, K. Agarwal, C. J. R. Sheppard, C. H. Phang, X. Chen, “A complete and computationally efficient numerical model of aplanatic solid immersion lens scanning microscope,” Opt. Express 21(12), 14316–14330 (2013). [CrossRef] [PubMed]
  16. L. Hu, R. Chen, K. Agarwal, C. J. R. Sheppard, J. C. H. Phang, X. Chen, “Dyadic Green’s function for aplanatic solid immersion lens based sub-surface microscopy,” Opt. Express 19(20), 19280–19295 (2011). [CrossRef] [PubMed]
  17. Throughout the article, the term “sub-diffraction” refers to a length scale smaller than the fundamental diffraction limit according to Rayleigh’s definition (0.61λ where the λ is the wavelength of light in the medium).
  18. A. N. Vamivakas, M. Atatüre, J. Dreiser, S. T. Yilmaz, A. Badolato, A. K. Swan, B. B. Goldberg, A. Imamoglu, M. S. Ünlü, “Strong extinction of a far-field laser beam by a single quantum dot,” Nano Lett. 7(9), 2892–2896 (2007). [CrossRef] [PubMed]
  19. L. Wang, M. C. Pitter, M. G. Somekh, “Wide-field high-resolution structured illumination solid immersion fluorescence microscopy,” Opt. Lett. 36(15), 2794–2796 (2011). [CrossRef] [PubMed]
  20. K. Karrai, X. Lorenz, L. Novotny, “Enhanced reflectivity contrast in confocal solid immersion lens microscopy,” Appl. Phys. Lett. 77(21), 3459–3461 (2000). [CrossRef]
  21. M. Lang, E. Aspnes, T. D. Milster, “Geometrical analysis of third-order aberrations for a solid immersion lens,” Opt. Express 16(24), 20008–20028 (2008). [CrossRef] [PubMed]
  22. Y. Lu, T. Bifano, S. Ünlü, B. Goldberg, “Aberration compensation in aplanatic solid immersion lens microscopy,” Opt. Express 21(23), 28189–28197 (2013). [CrossRef] [PubMed]
  23. L. Novotny and B. Hecht, Principles of Nano-Optics (Cambridge U. Press, 2006).
  24. M. B. Pereira, J. S. Craven, S. B. Mendes, “Solid immersion lens at the aplanatic condition for enhancing the spectral bandwidth of a waveguide grating coupler,” Opt. Eng. 49(12), 124601 (2010). [CrossRef] [PubMed]
  25. B. B. Goldberg, A. Yurt, Y. Lu, E. Ramsay, F. H. Köklü, J. Mertz, T. G. Bifano, M. S. Ünlü, “Chromatic and spherical aberration correction for silicon aplanatic solid immersion lens for fault isolation and photon emission microscopy of integrated circuits,” Microelectron. Reliab. 51(9-11), 1637–1639 (2011). [CrossRef]
  26. K. A. Serrels, E. Ramsay, P. A. Dalgarno, B. Gerardot, J. O’Connor, R. H. Hadfield, R. J. Warburton, D. T. Reid, “Solid immersion lens applications for nanophotonic devices,” J. Nanophoton. 2(1), 021854 (2008). [CrossRef]
  27. C. Liu, S. H. Park, “Numerical analysis of an annular-aperture solid immersion lens,” Opt. Lett. 29(15), 1742–1744 (2004). [CrossRef] [PubMed]
  28. D. R. Mason, M. V. Jouravlev, K. S. Kim, “Enhanced resolution beyond the Abbe diffraction limit with wavelength-scale solid immersion lenses,” Opt. Lett. 35(12), 2007–2009 (2010). [CrossRef] [PubMed]
  29. J. Enderlein, I. Gregor, T. Ruckstuhl, “Imaging properties of supercritical angle fluorescence optics,” Opt. Express 19(9), 8011–8018 (2011). [CrossRef] [PubMed]
  30. Note that the circularly asymmetric intensity distribution in the allowed zone is obscured due to the logarithmic scale and the range on the plots.
  31. O. Haeberlé, M. Ammar, H. Furukawa, K. Tenjimbayashi, P. Török, “The point spread function of optical microscopes imaging through stratified media,” Opt. Express 11(22), 2964–2969 (2003). [CrossRef] [PubMed]
  32. P. Török, “Propagation of electromagnetic dipole waves through dielectric interfaces,” Opt. Lett. 25(19), 1463–1465 (2000). [CrossRef] [PubMed]
  33. F. Goos, H. Hänchen, “Ein neuer und fundamentaler Versuch zur Totalreflexion,” Ann. Phys. 436(7-8), 333–346 (1947). [CrossRef]
  34. A. J. den Dekker, A. van den Bos, “Resolution: a survey,” J. Opt. Soc. Am. A 14(3), 547–557 (1997). [CrossRef]
  35. C. M. Sparrow, “On spectroscopic resolving power,” Astrophys. J. 44, 76–86 (1916). [CrossRef]
  36. T. Asakura, “Resolution of two unequally bright points with partially coherent light,” Nouv. Rev. Opt. 5(3), 169–177 (1974). [CrossRef]
  37. M. Born and E. Wolf, Principles of Optics (Cambridge University, 1997).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited