OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7434–7445

Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement

Daniel Lin and Jer-Shing Huang  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7434-7445 (2014)
http://dx.doi.org/10.1364/OE.22.007434


View Full Text Article

Enhanced HTML    Acrobat PDF (1644 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a new design of plasmonic nanoantenna with slant gap for optical chirality engineering. At resonance, the slant gap provides highly enhanced electric field parallel to external magnetic field with a phase delay of π/2, resulting in enhanced optical chirality. We show by numerical simulations that upon linearly polarized excitation our nanoantenna can generate near field with enhanced optical chirality which can be tuned by the slant angle and resonance condition. Our design allows chiral analysis with linearly polarized light and may find applications in circular dichroism analysis of chiral matter at surface.

© 2014 Optical Society of America

OCIS Codes
(170.4520) Medical optics and biotechnology : Optical confinement and manipulation
(240.6680) Optics at surfaces : Surface plasmons
(260.6970) Physical optics : Total internal reflection
(250.5403) Optoelectronics : Plasmonics
(310.6628) Thin films : Subwavelength structures, nanostructures

ToC Category:
Plasmonics

History
Original Manuscript: January 13, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 13, 2014
Published: March 24, 2014

Citation
Daniel Lin and Jer-Shing Huang, "Slant-gap plasmonic nanoantennas for optical chirality engineering and circular dichroism enhancement," Opt. Express 22, 7434-7445 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7434


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. J. Greenfield, “Applications of circular dichroism in protein and peptide analysis,” Trends Analyt. Chem. 18(4), 236–244 (1999). [CrossRef]
  2. N. Yang, Y. Tang, A. E. Cohen, “Spectroscopy in sculpted fields,” Nano Today 4(3), 269–279 (2009). [CrossRef]
  3. N. Yang, A. E. Cohen, “Local geometry of electromagnetic fields and its role in molecular multipole transitions,” J. Phys. Chem. B 115(18), 5304–5311 (2011). [CrossRef] [PubMed]
  4. L. D. Barron, Molecular Light Scattering and Optical Activity, 2nd ed. (Cambridge University, 2004).
  5. E. Hendry, R. V. Mikhaylovskiy, L. D. Barron, M. Kadodwala, T. J. Davis, “Chiral electromagnetic fields generated by arrays of nanoslits,” Nano Lett. 12(7), 3640–3644 (2012). [CrossRef] [PubMed]
  6. M. Schäferling, X. Yin, H. Giessen, “Formation of chiral fields in a symmetric environment,” Opt. Express 20(24), 26326–26336 (2012). [CrossRef] [PubMed]
  7. M. Meinzer, E. Hendry, W. L. Barnes, “Probing the chiral nature of electromagnetic fields surrounding plasmonic nanostructures,” Phys. Rev. B 88(4), 041407 (2013). [CrossRef]
  8. Y. Tang, A. E. Cohen, “Optical chirality and its interaction with matter,” Phys. Rev. Lett. 104(16), 163901 (2010). [CrossRef] [PubMed]
  9. D. M. Lipkin, “Existence of a new conservation law in electromagnetic theory,” J. Math. Phys. 5(5), 696–700 (1964). [CrossRef]
  10. Y. Tang, A. E. Cohen, “Enhanced enantioselectivity in excitation of chiral molecules by superchiral light,” Science 332(6027), 333–336 (2011). [CrossRef] [PubMed]
  11. P. J. Schuck, D. P. Fromm, A. Sundaramurthy, G. S. Kino, W. E. Moerner, “Improving the mismatch between light and nanoscale objects with gold bowtie nanoantennas,” Phys. Rev. Lett. 94(1), 017402 (2005). [CrossRef] [PubMed]
  12. L. Novotny, N. Van Hulst, “Antennas for light,” Nat. Photonics 5(2), 83–90 (2011). [CrossRef]
  13. P. Biagioni, J.-S. Huang, B. Hecht, “Nanoantennas for visible and infrared radiation,” Rep. Prog. Phys. 75(2), 024402 (2012). [CrossRef] [PubMed]
  14. A. Papakostas, A. Potts, D. M. Bagnall, S. L. Prosvirnin, H. J. Coles, N. I. Zheludev, “Optical manifestations of planar chirality,” Phys. Rev. Lett. 90(10), 107404 (2003). [CrossRef] [PubMed]
  15. M. Kuwata-Gonokami, N. Saito, Y. Ino, M. Kauranen, K. Jefimovs, T. Vallius, J. Turunen, Y. Svirko, “Giant optical activity in quasi-two-dimensional planar nanostructures,” Phys. Rev. Lett. 95(22), 227401 (2005). [CrossRef] [PubMed]
  16. P. Biagioni, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Cross resonant optical antenna,” Phys. Rev. Lett. 102(25), 256801 (2009). [CrossRef] [PubMed]
  17. P. Biagioni, M. Savoini, J.-S. Huang, L. Duò, M. Finazzi, B. Hecht, “Near-field polarization shaping by a near-resonant plasmonic cross antenna,” Phys. Rev. B 80(15), 153409 (2009). [CrossRef]
  18. J. K. Gansel, M. Thiel, M. S. Rill, M. Decker, K. Bade, V. Saile, G. von Freymann, S. Linden, M. Wegener, “Gold helix photonic metamaterial as broadband circular polarizer,” Science 325(5947), 1513–1515 (2009). [CrossRef] [PubMed]
  19. M. Decker, R. Zhao, C. M. Soukoulis, S. Linden, M. Wegener, “Twisted split-ring-resonator photonic metamaterial with huge optical activity,” Opt. Lett. 35(10), 1593–1595 (2010). [CrossRef] [PubMed]
  20. R. Quidant, M. Kreuzer, “Biosensing: Plasmons offer a helping hand,” Nat. Nanotechnol. 5(11), 762–763 (2010). [CrossRef] [PubMed]
  21. E. Hendry, T. Carpy, J. Johnston, M. Popland, R. V. Mikhaylovskiy, A. J. Lapthorn, S. M. Kelly, L. D. Barron, N. Gadegaard, M. Kadodwala, “Ultrasensitive detection and characterization of biomolecules using superchiral fields,” Nat. Nanotechnol. 5(11), 783–787 (2010). [CrossRef] [PubMed]
  22. M. Schäferling, D. Dregely, M. Hentschel, H. Giessen, “Tailoring enhanced optical chirality: design principles for chiral plasmonic nanostructures,” Phys. Rev 2, 031010 (2012).
  23. Y. Zhao, M. A. Belkin, A. Alù, “Twisted optical metamaterials for planarized ultrathin broadband circular polarizers,” Nat Commun 3, 870 (2012). [CrossRef] [PubMed]
  24. X. B. Shen, A. Asenjo-Garcia, Q. Liu, Q. Jiang, F. J. García de Abajo, N. Liu, B. Q. Ding, “Three-dimensional plasmonic chiral tetramers assembled by DNA origami,” Nano Lett. 13(5), 2128–2133 (2013). [CrossRef] [PubMed]
  25. V. K. Valev, J. J. Baumberg, C. Sibilia, T. Verbiest, “Chirality and chiroptical effects in plasmonic nanostructures: fundamentals, recent progress, and outlook,” Adv. Mater. 25(18), 2517–2534 (2013). [CrossRef] [PubMed]
  26. B. Frank, X. Yin, M. Schäferling, J. Zhao, S. M. Hein, P. V. Braun, H. Giessen, “Large-area 3D chiral plasmonic structures,” ACS Nano 7(7), 6321–6329 (2013). [CrossRef] [PubMed]
  27. T. J. Davis, E. Hendry, “Superchiral electromagnetic fields created by surface plasmons in nonchiral metallic nanostructures,” Phys. Rev. B 87(8), 085405 (2013). [CrossRef]
  28. A. García-Etxarri, J. A. Dionne, “Surface-enhanced circular dichroism spectroscopy mediated by nonchiral nanoantennas,” Phys. Rev. B 87(23), 235409 (2013). [CrossRef]
  29. D. Axelrod, T. P. Burghardt, N. L. Thompson, “Total internal reflection fluorescence,” Annu. Rev. Biophys. Bioeng. 13(1), 247–268 (1984). [CrossRef] [PubMed]
  30. M. Tokunaga, K. Kitamura, K. Saito, A. H. Iwane, T. Yanagida, “Single molecule imaging of fluorophores and enzymatic reactions achieved by objective-type total internal reflection fluorescence microscopy,” Biochem. Biophys. Res. Commun. 235(1), 47–53 (1997). [CrossRef] [PubMed]
  31. D. Axelrod, E. H. Hellen, and R. M. Fulbright, in Topics in Fluorescence Spectroscopy: Biochemical Applications, J. R. Lakowicz, ed. (Kluwer Academic, 2002).
  32. H.-F. Fan, F. P. Li, R. N. Zare, K.-C. Lin, “Characterization of two types of silanol groups on fused-silica surfaces using evanescent-wave cavity ring-down spectroscopy,” Anal. Chem. 79(10), 3654–3661 (2007). [CrossRef] [PubMed]
  33. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  34. J. Dorfmüller, R. Vogelgesang, W. Khunsin, C. Rockstuhl, C. Etrich, K. Kern, “Plasmonic nanowire antennas: experiment, simulation, and theory,” Nano Lett. 10(9), 3596–3603 (2010). [CrossRef] [PubMed]
  35. D. W. Pohl, S. G. Rodrigo, L. Novotny, “Stacked optical antennas,” Appl. Phys. Lett. 98(2), 023111 (2011). [CrossRef]
  36. C.-H. Liu, C.-H. Chen, S.-Y. Chen, Y.-T. Yen, W.-C. Kuo, Y.-K. Liao, J.-Y. Juang, H.-C. Kuo, C.-H. Lai, L.-J. Chen, Y.-L. Chueh, “Large scale single-crystal Cu(In,Ga)Se2 nanotip arrays for high efficiency solar cell,” Nano Lett. 11(10), 4443–4448 (2011). [CrossRef] [PubMed]
  37. G. London, G. T. Carroll, T. Fernández Landaluce, M. M. Pollard, P. Rudolf, B. L. Feringa, “Light-driven altitudinal molecular motors on surfaces,” Chem. Commun. (Camb.) 2009(13), 1712–1714 (2009). [CrossRef] [PubMed]
  38. N. P. M. Huck, W. F. Jager, B. de Lange, B. L. Feringa, “Dynamic control and amplification of molecular chirality by circular polarized light,” Science 273(5282), 1686–1688 (1996). [CrossRef]
  39. J. J. D. de Jong, L. N. Lucas, R. M. Kellogg, J. H. van Esch, B. L. Feringa, “Reversible optical transcription of supramolecular chirality into molecular chirality,” Science 304(5668), 278–281 (2004). [CrossRef] [PubMed]
  40. Y. Inoue, “Asymmetric photochemical reactions in solution,” Chem. Rev. 92(5), 741–770 (1992). [CrossRef]
  41. K. Ohkubo, T. Hamada, M. Watanabe, “Novel photoinduced asymmetric synthesis of Ʌ-[Co(acac)3] from Co(acac)2(H2O)2 and Hacac catalysed by racemic complexes of Δ- and Ʌ-[Ru(menbpy)3]2+{menbpy = 4,4’-Di-[(1R,2S,5R)-(-)-menthoxycarbonyl)]-2,2’-bipyridine; Hacac = pentane-2,4-dione},” Chem. Commun. 1993(13), 1070–1072 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited