OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7465–7472

Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure

Yanmeng Dai, Wenzhen Ren, Hongbing Cai, Huaiyi Ding, Nan Pan, and Xiaoping Wang  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7465-7472 (2014)
http://dx.doi.org/10.1364/OE.22.007465


View Full Text Article

Enhanced HTML    Acrobat PDF (1850 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Abrupt phase shift introduced by plasmonic resonances has been frequently used to design subwavelength wave plates for optical integration. Here, with the sandwich structure consisting of a top periodic patterned silver nanopatch, an in-between insulator layer and a bottom thick Au film, we realize a broadband half-wave plate which is capable to cover entire visible light spectrum ranging from 400 to 780 nm. Moreover, when the top layer is replaced with a periodic array of composite super unit cell comprised of two nanopatches with different sizes, the operation bandwidth can be further improved to exceed an octave (400-830 nm). In particular, we demonstrate that the designed half-wave plate can be used efficiently to rotate the polarization state of an ultra-fast light pulse with reserved pulse width. Our result offers a new strategy to design and construct broadband high efficiency phase-response based optical components using patterned metal nanoarray/insulator/metal structure.

© 2014 Optical Society of America

OCIS Codes
(050.5080) Diffraction and gratings : Phase shift
(260.5430) Physical optics : Polarization
(160.3918) Materials : Metamaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Metamaterials

History
Original Manuscript: January 21, 2014
Revised Manuscript: February 26, 2014
Manuscript Accepted: March 13, 2014
Published: March 24, 2014

Citation
Yanmeng Dai, Wenzhen Ren, Hongbing Cai, Huaiyi Ding, Nan Pan, and Xiaoping Wang, "Realizing full visible spectrum metamaterial half-wave plates with patterned metal nanoarray/insulator/metal film structure," Opt. Express 22, 7465-7472 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7465


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. N. Yu, P. Genevet, M. A. Kats, F. Aieta, J.-P. Tetienne, F. Capasso, Z. Gaburro, “Light propagation with phase discontinuities: generalized laws of reflection and refraction,” Science 334(6054), 333–337 (2011). [CrossRef] [PubMed]
  2. Z. Wei, Y. Cao, X. Su, Z. Gong, Y. Long, H. Li, “Highly efficient beam steering with a transparent metasurface,” Opt. Express 21(9), 10739–10745 (2013). [CrossRef] [PubMed]
  3. S. Ishii, V. M. Shalaev, A. V. Kildishev, “Holey-metal lenses: sieving single modes with proper phases,” Nano Lett. 13(1), 159–163 (2013). [CrossRef] [PubMed]
  4. P. Genevet, N. Yu, F. Aieta, J. Lin, M. A. Kats, R. Blanchard, M. O. Scully, Z. Gaburro, F. Capasso, “Ultra-thin plasmonic optical vortex plate based on phase discontinuities,” Appl. Phys. Lett. 100(1), 013101 (2012). [CrossRef]
  5. A. Pors, M. G. Nielsen, G. Della Valle, M. Willatzen, O. Albrektsen, S. I. Bozhevolnyi, “Plasmonic metamaterial wave retarders in reflection by orthogonally oriented detuned electrical dipoles,” Opt. Lett. 36(9), 1626–1628 (2011). [CrossRef] [PubMed]
  6. A. Pors, M. G. Nielsen, S. I. Bozhevolnyi, “Broadband plasmonic half-wave plates in reflection,” Opt. Lett. 38(4), 513–515 (2013). [CrossRef] [PubMed]
  7. N. K. Grady, J. E. Heyes, D. R. Chowdhury, Y. Zeng, M. T. Reiten, A. K. Azad, A. J. Taylor, D. A. R. Dalvit, H.-T. Chen, “Terahertz metamaterials for linear polarization conversion and anomalous refraction,” Science 340(6138), 1304–1307 (2013). [CrossRef] [PubMed]
  8. A. Roberts, L. Lin, “Plasmonic quarter-wave plate,” Opt. Lett. 37(11), 1820–1822 (2012). [CrossRef] [PubMed]
  9. E. H. Khoo, E. P. Li, K. B. Crozier, “Plasmonic wave plate based on subwavelength nanoslits,” Opt. Lett. 36(13), 2498–2500 (2011). [CrossRef] [PubMed]
  10. C. Pfeiffer, A. Grbic, “Metamaterial Huygens’ surfaces: tailoring wave fronts with reflectionless sheets,” Phys. Rev. Lett. 110(19), 197401 (2013). [CrossRef] [PubMed]
  11. M. Selvanayagam, G. V. Eleftheriades, “Discontinuous electromagnetic fields using orthogonal electric and magnetic currents for wavefront manipulation,” Opt. Express 21(12), 14409–14429 (2013). [CrossRef] [PubMed]
  12. F. Monticone, N. M. Estakhri, A. Alù, “Full control of nanoscale optical transmission with a composite metascreen,” Phys. Rev. Lett. 110(20), 203903 (2013). [CrossRef]
  13. Y.-J. Chiang, T.-J. Yen, “A composite-metamaterial-based terahertz-wave polarization rotator with an ultrathin thickness, an excellent conversion ratio, and enhanced transmission,” Appl. Phys. Lett. 102(1), 011129 (2013). [CrossRef]
  14. J. Y. Chin, J. N. Gollub, J. J. Mock, R. Liu, C. Harrison, D. R. Smith, T. J. Cui, “An efficient broadband metamaterial wave retarder,” Opt. Express 17(9), 7640–7647 (2009). [CrossRef] [PubMed]
  15. J. Hao, Q. Ren, Z. An, X. Huang, Z. Chen, M. Qiu, L. Zhou, “Optical metamaterial for polarization control,” Phys. Rev. A 80(2), 023807 (2009). [CrossRef]
  16. M. Pu, P. Chen, Y. Wang, Z. Zhao, C. Huang, C. Wang, X. Ma, X. Luo, “Anisotropic meta-mirror for achromatic electromagnetic polarization manipulation,” Appl. Phys. Lett. 102(13), 131906 (2013). [CrossRef]
  17. V. M. Shalaev, “Optical negative-index metamaterials,” Nat. Photonics 1(1), 41–48 (2007). [CrossRef]
  18. M. G. Nielsen, A. Pors, O. Albrektsen, S. I. Bozhevolnyi, “Efficient absorption of visible radiation by gap plasmon resonators,” Opt. Express 20(12), 13311–13319 (2012). [CrossRef] [PubMed]
  19. D. Ye, Z. Wang, K. Xu, H. Li, J. Huangfu, Z. Wang, L. Ran, “Ultrawideband dispersion control of a metamaterial surface for perfectly-matched-layer-like absorption,” Phys. Rev. Lett. 111(18), 187402 (2013). [CrossRef] [PubMed]
  20. Y.-G. Bi, J. Feng, Y.-F. Li, X.-L. Zhang, Y.-F. Liu, Y. Jin, H.-B. Sun, “Broadband light extraction from white organic light-emitting devices by employing corrugated metallic electrodes with dual periodicity,” Adv. Mater. 25(48), 6969–6974 (2013). [CrossRef] [PubMed]
  21. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  22. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985).
  23. A. Pors, S. I. Bozhevolnyi, “Efficient and broadband quarter-wave plates by gap-plasmon resonators,” Opt. Express 21(3), 2942–2952 (2013). [CrossRef] [PubMed]
  24. A. Boltasseva, H. A. Atwater, “Low-loss plasmonic metamaterials,” Science 331(6015), 290–291 (2011). [CrossRef] [PubMed]
  25. A. B. Evlyukhin, S. M. Novikov, U. Zywietz, R. L. Eriksen, C. Reinhardt, S. I. Bozhevolnyi, B. N. Chichkov, “Demonstration of magnetic dipole resonances of dielectric nanospheres in the visible region,” Nano Lett. 12(7), 3749–3755 (2012). [CrossRef] [PubMed]
  26. Y. Zhao, A. Alù, “Manipulating light polarization with ultrathin plasmonic metasurfaces,” Phys. Rev. B 84(20), 205428 (2011). [CrossRef]
  27. W. Ren, Y. Dai, H. Cai, H. Ding, N. Pan, X. Wang, “Tailoring the coupling between localized and propagating surface plasmons: realizing Fano-like interference and high-performance sensor,” Opt. Express 21(8), 10251–10258 (2013). [CrossRef] [PubMed]
  28. H.-T. Chen, “Interference theory of metamaterial perfect absorbers,” Opt. Express 20(7), 7165–7172 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited