OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7473–7491

The selection rule of graphene in a composite magnetic field

Y. C. Ou, Y. H. Chiu, P. H. Yang, and M. F. Lin  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7473-7491 (2014)
http://dx.doi.org/10.1364/OE.22.007473


View Full Text Article

Enhanced HTML    Acrobat PDF (2178 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The generalized tight-binding model with exact diagonalization method is developed to calculate the optical properties of monolayer graphene in the presence of composite magnetic fields. The ratio of the uniform magnetic field and the modulated one accounts for a strong influence on the structure, number, intensity and frequency of absorption peaks, and thus the extra selection rules that are subsequently induced can be explained. When the modulated field increases, each symmetric peak, under a uniform magnetic field, splits into a pair of asymmetric peaks with lower intensities. The threshold absorption frequency exhibits an obvious evolution in terms of a redshift. These absorption peaks obey the same selection rule that is followed by Landau level transitions. Moreover, at a sufficiently strong modulation strength, the extra peaks in the absorption spectrum might arise from different selection rules.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.1030) Spectroscopy : Absorption
(300.6170) Spectroscopy : Spectra
(310.6860) Thin films : Thin films, optical properties

ToC Category:
Materials

History
Original Manuscript: January 23, 2014
Revised Manuscript: March 6, 2014
Manuscript Accepted: March 9, 2014
Published: March 24, 2014

Citation
Y. C. Ou, Y. H. Chiu, P. H. Yang, and M. F. Lin, "The selection rule of graphene in a composite magnetic field," Opt. Express 22, 7473-7491 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, Y. Zhang, S. V. Dubonos, “Electric Field Effect in Atomically Thin Carbon Films,” Science 306, 666–669 (2004). [CrossRef] [PubMed]
  2. K. S. Novoselov, A. K. Geim, S. V. Morozov, D. Jiang, M. I. Katsnelson, I. V. Grigorieva, S. V. Dubonos, A. A. Firsov, “Two-dimensional gas of massless Dirac fermions in graphene,” Nature (London) 438, 197–200 (2005). [CrossRef]
  3. J. Coraux, A. T. N’Diaye, C. Busse, T. Michely, “Structural Coherency of Graphene on Ir(111),” Nano Lett. 8, 565–570 (2008). [CrossRef] [PubMed]
  4. N. W. Nicholas, L. M. Connors, F. Ding, B. I. Yakobson, H. K. Schmidt, R. H. Hauge, “Templated growth of graphenic materials,” Nanotechnology 20, 245607 (2009). [CrossRef] [PubMed]
  5. C. Berger, Z. Song, X. Li, X. Wu, N. Brown, C. Naud, D. Mayou, T. Li, J. Hass, A. N. Marchenkov, E. H. Conrad, P. N. First, W. A. de Heer, “Electronic Confinement and Coherence in Patterned Epitaxial Graphene,” Science 312, 1191–1196 (2006). [CrossRef] [PubMed]
  6. J. Campos-Delgado, Y. A. Kim, T. Hayashi, A. Morelos-Gómez, M. Hofmann, H. Muramatsu, M. Endo, H. Terrones, R. D. Shull, M. S. Dresselhaus, M. Terrones, “Thermal stability studies of CVD-grown graphene nanoribbons: Defect annealing and loop formation,” Chem. Phys. Lett. 469, 177–182 (2009). [CrossRef]
  7. J. Campos-Delgado, J. M. Romo-Herrera, X. Jia, D. A. Cullen, H. Muramatsu, Y. A. Kim, T. Hayashi, Z. Ren, D. J. Smith, Y. Okuno, T. Ohba, H. Kanoh, K. Kaneko, M. Endo, H. Terrones, M. S. Dresselhaus, M. Terrones, “Bulk Production of a New Form of sp2 Carbon: Crystalline Graphene Nanoribbons,” Nano Lett. 8, 2773–2778 (2008). [CrossRef] [PubMed]
  8. J. H. Ho, Y. H. Lai, Y. H. Chiu, M. F. Lin, “Landau levels in graphene,” Physica E 40, 1722–1725 (2008). [CrossRef]
  9. F. D. M. Haldane, “Model for a Quantum Hall Effect without Landau Levels: Condensed-Matter Realization of the “Parity Anomaly”,” Phys. Rev. Lett. 61, 2015 (1988). [CrossRef] [PubMed]
  10. Z. Jiang, E. A. Henriksen, L. C. Tung, Y. J. Wang, M. E. Schwartz, M. Y. Hun, P. Kim, H. L. Stormer, “Infrared Spectroscopy of Landau Levels of Graphene,” Phys. Rev. Lett. 98, 197403 (2007). [CrossRef] [PubMed]
  11. Y. Zhang, Y. W. Tan, H. L. Stormer, P. Kim, “Experimental observation of the quantum Hall effect and Berry’s phase in graphene,” Nature 438, 201–204 (2005). [CrossRef] [PubMed]
  12. P. R. Wallace, “The Band Theory of Graphite,” Phys. Rev. 71, 622 (1947). [CrossRef]
  13. M. I. Katsnelson, K. S. Novoselov, A. K. Geim, “Chiral tunnelling and the Klein paradox in graphene,” Nat. Phys. 2, 620–625 (2006). [CrossRef]
  14. K. I. Bolotin, F. Ghahari, M. D. Shulman, H. L. Stormer, P. Kim, “Observation of the fractional quantum Hall effect in graphene,” Nature 462, 196–199 (2009). [CrossRef] [PubMed]
  15. K. S. Novoselov, Z. Jiang, Y. Zhang, S. V. Morozov, H. L. Stormer, U. Zeitler, J. C. Maan, G. S. Boebinger, P. Kim, A. K. Geim, “Room-Temperature Quantum Hall Effect in Graphene,” Science 315, 1379 (2007). [CrossRef] [PubMed]
  16. R. S. Deacon, K. C. Chuang, R. J. Nicholas, K. S. Novoselov, A. K. Geim, “Cyclotron resonance study of the electron and hole velocity in graphene monolayers,” Phys. Rev. B 76, 081406 (2007). [CrossRef]
  17. S. Yuan, R. Roldán, M. I. Katsnelson, “Polarization of graphene in a strong magnetic field beyond the Dirac cone approximation,” Solid State Commun. 152, 1446–1455 (2012). [CrossRef]
  18. R. R. Hartmann, N. J. Robinson, M. E. Portnoi, “Smooth electron waveguides in graphene,” Phys. Rev. B 81, 245431 (2010). [CrossRef]
  19. D. A. Stone, C. A. Downing, M. E. Portnoi, “Searching for confined modes in graphene channels: The variable phase method,” Phys. Rev. B 86, 075464 (2012). [CrossRef]
  20. M. Ramezani Masir, P. Vasilopoulos, F. M. Peeters, “Magnetic Kronig–Penney model for Dirac electrons in single-layer graphene,” New J. Phys. 11, 095009 (2009). [CrossRef]
  21. H. C. Kao, M. Lewkowicz, Y. Korniyenko, B. Rosenstein, “Dynamical approach to ballistic transport in graphene,” Comput. Phys. Commun. 182, 112–114 (2011). [CrossRef]
  22. D. P. Arovas, L. Brey, H. A. Fertig, E.-A. Kim, K. Ziegler, “Dirac spectrum in piecewise constant one-dimensional (1D) potentials,” New J. Phys. 12, 123020 (2010). [CrossRef]
  23. C. Bai, X. Zhang, “Klein paradox and resonant tunneling in a graphene superlattice,” Phys. Rev. B 76, 075430 (2007). [CrossRef]
  24. M. Barbier, F. M. Peeters, P. Vasilopoulos, J. M. Pereira, “Dirac and Klein-Gordon particles in one-dimensional periodic potentials,” Phys. Rev. B 77, 115446 (2008). [CrossRef]
  25. L. Brey, H. A. Fertig, “Emerging Zero Modes for Graphene in a Periodic Potential,” Phys. Rev. Lett. 103, 046809 (2009). [CrossRef] [PubMed]
  26. M. Barbier, P. Vasilopoulos, F. M. Peeters, “Extra Dirac points in the energy spectrum for superlattices on single-layer graphene,” Phys. Rev. B 81, 075438 (2010). [CrossRef]
  27. L.-G. Wang, S.-Y. Zhu, “Electronic band gaps and transport properties in graphene superlattices with one-dimensional periodic potentials of square barriers,” Phys. Rev. B 81, 205444 (2010). [CrossRef]
  28. V. P. Gusynin, S. G. Sharapov, “Magnetic oscillations in planar systems with the Dirac-like spectrum of quasiparticle excitations. II. Transport properties,” Phys. Rev. B 71, 125124 (2005). [CrossRef]
  29. M. S. Purewal, Y. Zhang, P. Kim, “Unusual transport properties in carbon based nanoscaled materials: nanotubes and graphene,” Phys. Status Solidi B 243, 3418–3422 (2006). [CrossRef]
  30. S. K. Firoz Islam, N. K. Singh, T. K. Ghosh, “Thermodynamic properties of a magnetically modulated graphene monolayer,” J. Phys.: Condens. Matter 23, 445502 (2011).
  31. M. Tahir, K. Sabeeh, A. MacKinnon, “Temperature effects on the magnetoplasmon spectrum of a weakly modulated graphene monolayer,” J. Phys.: Condens. Matter 23, 425304 (2011).
  32. M. Tahir, K. Sabeeh, A. MacKinnon, “Weiss oscillations in the electronic structure of modulated graphene,” J. Phys.: Condens. Matter 19, 406226 (2007).
  33. M. Tahir, K. Sabeeh, “Theory of Weiss oscillations in the magnetoplasmon spectrum of Dirac electrons in graphene,” Phys. Rev. B 76, 195416 (2007). [CrossRef]
  34. A. Matulis, F. M. Peeters, ”Appearance of enhanced Weiss oscillations in graphene: Theory,” Phys. Rev. B 75, 125429 (2007). [CrossRef]
  35. Y. C. Ou, J. K. Sheu, Y. H. Chiu, R. B. Chen, M. F. Lin, “Influence of modulated fields on the Landau level properties of graphene,” Phys. Rev. B 83, 195405 (2011). [CrossRef]
  36. Y. C. Ou, Y. H. Chiu, J. M. Lu, W. P. Su, M. F. Lin, “Electric modulation effect on magneto-optical spectrum of monolayer graphene,” Comput. Phys. Commun. 184, 1821–1826 (2013). [CrossRef]
  37. C. P. Chang, C. L. Lu, F. L. Shyu, R. B. Chen, Y. K. Fang, M. F. Lin, “Magnetoelectronic properties of a graphite sheet,” Carbon 42, 2975–2980 (2004). [CrossRef]
  38. P. Plochocka, C. Faugeras, M. Orlita, M. L. Sadowski, G. Martinez, M. Potemski, M. O. Goerbig, J.-N. Fuchs, C. Berger, W. A. de Heer, “High-Energy Limit of Massless Dirac Fermions in Multilayer Graphene using Magneto-Optical Transmission Spectroscopy,” Phys. Rev. Lett. 100, 087401 (2008). [CrossRef] [PubMed]
  39. Y. H. Chiu, J. H. Ho, C. P. Chang, D. S. Chuu, M. F. Lin, “Low-frequency magneto-optical excitations of a graphene monolayer: Peierls tight-binding model and gradient approximation calculation,” Phys. Rev. B 78, 245411 (2008). [CrossRef]
  40. Y. H. Chiu, Y. C. Ou, Y. Y. Liao, M. F. Lin, “Optical-absorption spectra of single-layer graphene in a periodic magnetic field,” J. Vac. Sci. Technol. B 28, 386–390 (1992). [CrossRef]
  41. Y. H. Chiu, Y. H. Lai, J. H. Ho, D. S. Chuu, M. F. Lin, “Electronic structure of a two-dimensional graphene monolayer in a spatially modulated magnetic field: Peierls tight-binding model,” Phys. Rev. B 77, 045407 (2008). [CrossRef]
  42. Y. H. Lai, J. H. Ho, C. P. Chang, M. F. Lin, “Magnetoelectronic properties of bilayer Bernal graphene,” Phys. Rev. B 77, 085426 (2008). [CrossRef]
  43. J. H. Ho, Y. H. Chiu, S. J. Tsai, M. F. Lin, “Semimetallic graphene in a modulated electric potential,” Phys. Rev. B 79, 115427 (2009). [CrossRef]
  44. J. H. Ho, Y. H. Lai, Y. H. Chiu, M. F. Lin, “Modulation effects on Landau levels in a monolayer graphene,” Nanotechnology 19, 035712 (2008). [CrossRef] [PubMed]
  45. N. Nemec, G. Cuniberti, “Hofstadter butterflies of bilayer graphene,” Phys. Rev. B 75, 201404 (2007). [CrossRef]
  46. T. G. Pedersen, “Tight-binding theory of Faraday rotation in graphite,” Phys. Rev. B 68, 245104 (2003). [CrossRef]
  47. G. Dresselhaus, M. S. Dresselhaus, “Fourier Expansion for the Electronic Energy Bands in Silicon and Germanium,” Phys. Rev. 160, 649–679 (1967). [CrossRef]
  48. L. G. Johnson, G. Dresselhaus, “Optical Properies of Graphite,” Phys. Rev. B 7, 2275–2285 (1973). [CrossRef]
  49. N. V. Smith, “Photoemission spectra and band structures of d-band metals. VII. Extensions of the combined interpolation scheme,” Phys. Rev. B 19, 5019–5027 (1979). [CrossRef]
  50. L. C. Lew Yan Voon, L. R. Ram-Mohan, “Tight-binding representation of the optical matrix elements: Theory and applications,” Phys. Rev. B 47, 15500–15508 (1993). [CrossRef]
  51. J. Blinowski, N. H. Hau, C. Rigaux, J. P. Vieren, R. L. Toullee, G. Furdin, A. Herold, J. Melin, “Band structure model and dynamical dielectric function in lowest stages of graphite acceptor compounds,” J. Phys. (Paris) 41, 47–58 (1980). [CrossRef]
  52. M. F. Lin, Kenneth W.-K. Shung, “Plasmons and optical properties of carbon nanotubes,” Phys. Rev. B 50, 17744–17747 (1994). [CrossRef]
  53. Y. H. Ho, Y. H. Chiu, D. H. Lin, C. P. Chang, M. F. Lin, “Magneto-optical Selection Rules in Bilayer Bernal Graphene,” ACS Nano 4, 1465–1472 (2010). [CrossRef] [PubMed]
  54. M. Kato, A. Endo, S. Katsumoto, Y. Iye, “Two-dimensional electron gas under a spatially modulated magnetic field: A test ground for electron-electron scattering in a controlled environment,” Phys. Rev. B 58, 4876–4881 (1998). [CrossRef]
  55. Y. H. Ho, J. Y. Wu, R. B. Chen, Y. H. Chiu, M. F. Lin, “Optical transitions between Landau levels: AA-stacked bilayer graphene,” Appl. Phys. Lett. 97, 101905 (2010). [CrossRef]
  56. Y. Zheng, T. Ando, “Hall conductivity of a two-dimensional graphite system,” Phys. Rev. B 65, 245420 (2002). [CrossRef]
  57. Y. C. Chuang, J. Y. Wu, M. F. Lin, “Electric Field Dependence of Excitation Spectra in AB-Stacked Bilayer Graphene,” Sci. Rep. 3, 1368 (2013). [CrossRef] [PubMed]
  58. C. W. Chiu, Y. C. Huang, F. L. Shyu, M. F. Lin, “Optical absorption spectra in ABC-stacked graphene superlattice,” Synth. Met. 162, 800–804 (2012). [CrossRef]
  59. S. Yuan, R. Roldán, M. I. Katsnelson, “Landau level spectrum of ABA- and ABC-stacked trilayer graphene,” Phys. Rev. B 84, 125455 (2011). [CrossRef]
  60. R. B. Chen, Y. H. Chiu, M. F. Lin, “A theoretical evaluation of the magneto-optical properties of AA-stacked graphite,” Carbon 54, 268–276 (2012). [CrossRef]
  61. X.-F. Wang, T. Chakraborty, “Coulomb screening and collective excitations in a graphene bilayer,” Phys. Rev. B 75, 041404 (2007). [CrossRef]
  62. X.-F. Wang, T. Chakraborty, “Collective excitations of Dirac electrons in a graphene layer with spin-orbit interactions,” Phys. Rev. B 75, 033408 (2007). [CrossRef]
  63. N. M. R. Peres, F. Guinea, A. H. Castro Neto, “Coulomb interactions and ferromagnetism in pure and doped graphene,” Phys. Rev. B 72, 174406 (2005). [CrossRef]
  64. J. Y. Wu, S. C. Chen, Oleksiy Roslyak, Godfrey Gumbs, M. F. Lin, “Plasma Excitations in Graphene: Their Spectral Intensity and Temperature Dependence in Magnetic Field,” ACS Nano 5, 1026–1032 (2011). [CrossRef] [PubMed]
  65. A. Iyengar, Jianhui Wang, H. A. Fertig, L. Brey, “Excitations from filled Landau levels in graphene,” Phys. Rev. B 75, 125430 (2007). [CrossRef]
  66. R. Roldán, J. N. Fuchs, M. O. Goerbig, “Spin-flip excitations, spin waves, and magnetoexcitons in graphene Landau levels at integer filling factors,” Phys. Rev. B 82, 205418 (2010). [CrossRef]
  67. V. P. Gusynin, S. G. Sharapov, “Transport of Dirac quasiparticles in graphene: Hall and optical conductivities,” Phys. Rev. B 73, 245411 (2006). [CrossRef]
  68. V. P. Gusynin, V. A. Miransky, S. G. Sharapov, I. A. Shovkovy, “Excitonic gap, phase transition, and quantum Hall effect in graphene,” Phys. Rev. B 74, 195429 (2006). [CrossRef]
  69. M. Koshino, T. Ando, “Transport in bilayer graphene: Calculations within a self-consistent Born approximation,” Phys. Rev. B 73, 245403 (2006). [CrossRef]
  70. J. Nilsson, A. H. Castro Neto, F. Guinea, N. M. R. Peres, “Electronic Properties of Graphene Multilayers,” Phys. Rev. Lett. 97, 266801 (2006). [CrossRef]
  71. N. M. R. Peres, F. Guinea, A. H. Castro Neto, “Electronic properties of disordered two-dimensional carbon,” Phys. Rev. B 73, 125411 (2006). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited