OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7503–7513

Photon transport in cylindrically-shaped disordered meso-macroporous materials

P. Gaikwad, S. Ungureanu, R. Backov, K. Vynck, and R. A. L. Vallée  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7503-7513 (2014)
http://dx.doi.org/10.1364/OE.22.007503


View Full Text Article

Enhanced HTML    Acrobat PDF (2682 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We theoretically and experimentally investigate light diffusion in disordered meso-macroporous materials with a cylindrical shape. High Internal Phase Emulsion (HIPE)-based silica foam samples, exhibiting a polydisperse pore-size distribution centered around 19 μm to resemble certain biological tissues, are realized. To quantify the effect of a finite lateral size on measurable quantities, an analytical model for diffusion in finite cylinders is developed and validated by Monte Carlo random walk simulations. Steady-state and time-resolved transmission experiments are performed and the transport parameters (transport mean free path and material absorption length) are successfully retrieved from fits of the experimental curves with the proposed model. This study reveals that scattering losses on the lateral sides of the samples are responsible for a lowering of the transmission signal and a shortening of the photon lifetime, similar in experimental observables to the effect of material absorption. The recognition of this geometrical effect is essential since its wrong attribution to material absorption could be detrimental in various applications, such as biological tissue diagnosis or conversion efficiency in dye-sensitized solar cells.

© 2014 Optical Society of America

OCIS Codes
(290.4210) Scattering : Multiple scattering
(290.5820) Scattering : Scattering measurements
(290.5825) Scattering : Scattering theory

ToC Category:
Materials

History
Original Manuscript: February 18, 2014
Manuscript Accepted: March 7, 2014
Published: March 24, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
P. Gaikwad, S. Ungureanu, R. Backov, K. Vynck, and R. A. L. Vallée, "Photon transport in cylindrically-shaped disordered meso-macroporous materials," Opt. Express 22, 7503-7513 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7503


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. B. Davis, A. Marshak, “Solar radiation transport in the cloudy atmosphere: a 3D perspective on observations and climate impacts,” Rep. Prog. Phys. 73, 026801 (2010). [CrossRef]
  2. S. Chandrasekhar, Radiative Transfer (Dover Publications, 2011).
  3. G. Reich, “Near-infrared spectroscopy and imaging: Basic principles and pharmaceutical applications,” Adv. Drug Delivery Rev. 57, 1109 (2005). [CrossRef]
  4. H. W. Siesler, Y. Ozaki, S. Kawata, H. M. Heise, “Near-Infrared Spectroscopy: Principles, Instruments, Applications” (Wiley, New York, 2008).
  5. V. V. Tuchin, Tissue Optics: Light Scattering Methods and Instruments for Medical Diagnosis, 2 (SPIE, Bellingham, WA, 2007). [CrossRef]
  6. L. V. Wang, H.-i. Wu, Biomedical Optics: Principles and Imaging (Wiley, New York, 2007).
  7. M. S. Patterson, B. Chance, B. C. Wilson, “Time resolved reflectance and transmittance for the noninvasive measurement of tissue optical properties,” Appl. Opt. 28, 2331–2336 (1989). [CrossRef] [PubMed]
  8. D. A. Benaron, D. K. Stevenson, “Optical time-of-flight and absorbance imaging of biologic media,” Science 259, 1463–1466 (1993). [CrossRef] [PubMed]
  9. T. Svensson, E. Alerstam, D. Khoptyar, J. Johansson, S. Folestad, S. Andersson-Engels, “Near-infrared photon time-of-flight spectroscopy of turbid materials up to 1400 nm,” Rev. Sci. Instrum. 80, 063105 (2009). [CrossRef] [PubMed]
  10. V. Backman, M. B. Wallace, L. T. Perelman, J. T. Arendt, R. Gurjar, M. G. Müller, Q. Zhang, G. Zonios, E. Kline, T. McGillican, S. Shapshay, T. Valdez, K. Badizadegan, J. M. Crawford, M. Fitzmaurice, S. Kabani, H. S. Levin, M. Seiler, R. R. Dasari, I. Itzkan, J. Van Dam, M. S. Feld, “Detection of preinvasive cancer cells,” Nature 406, 35–36 (2000). [CrossRef] [PubMed]
  11. E. Alerstam, T. Svensson, “Observation of anisotropic diffusion of light in compacted granular porous materials,” Phys. Rev. E 89, 040301 (2012). [CrossRef]
  12. T. Svensson, M. Andersson, L. Rippe, S. Svanberg, S. Andersson-Engels, J. Johansson, S. Folestad, “VCSEL-based oxygen spectroscopy for structural analysis of pharmaceutical solids,” Appl. Phys. B 90, 345–354 (2008). [CrossRef]
  13. Z. Shi, C. A. Anderson, “Pharmaceutical applications of separation of absorption and scattering in near-infrared spectroscopy (NIRS),” J. Pharm. Sci. 99, 4766–4783 (2010). [CrossRef] [PubMed]
  14. C. M. Leroy, C. Olivier, T. Toupance, M. Abbas, L. Hirsch, S. Ravaine, R. Backov, “One-pot easily-processed TiO2 macroporous photoanodes (Ti-HIPE) for dye-sensitized solar cells,” Sol. State Sci. 28, 81–89 (2014). [CrossRef]
  15. A. Ishimaru, Wave Propagation and Scattering in Random Media (Wiley-IEEE Press, 1999).
  16. D. Contini, F. Martelli, G. Zaccanti, “Photon migration through a turbid slab described by a model based on diffusion approximation. I. Theory,” Appl. Opt. 36, 4587–4599 (1997). [CrossRef] [PubMed]
  17. M. C. W. van Rossum, Th. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  18. E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University Press, 2007). [CrossRef]
  19. A. Z. Genack, J. M. Drake, “Relationship between Optical Intensity, Fluctuations and Pulse Propagation in Random Media,” Europhys. Lett. 11, 4331–4336 (1990). [CrossRef]
  20. P. D. Garcia, R. Sapienza, J. Bertolotti, M. D. Martín, Á. Blanco, A. Altube, L. Vina, D. S. Wiersma, C. López, “Resonant light transport through Mie modes in photonic glasses,” Phys. Rev. A 78, 023823 (2008). [CrossRef]
  21. T. van der Beek, P. Barthelemy, P. M. Johnson, D. S. Wiersma, A. Lagendijk, “Light transport through disordered layers of dense gallium arsenide submicron particles,” Phys. Rev. B 85, 115401 (2012). [CrossRef]
  22. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Opt. Lett. 32, 2309–2311 (2007). [CrossRef] [PubMed]
  23. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the Transmission Matrix in Optics: An Approach to the Study and Control of Light Propagation in Disordered Media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  24. R. Savo, M. Burresi, T. Svensson, K. Vynck, D. S. Wiersma, “Measuring the fractal dimension of an optical random walk,” arXiv:1312.5962.
  25. N. Ghofraniha, I. Viola, A. Zacheo, V. Arima, G. Gigli, C. Conti, “Transition from nonresonant to resonant random lasers by the geometrical confinement of disorder,” Opt. Lett. 38, 5043–5046 (2013). [CrossRef] [PubMed]
  26. F. Carn, A. Colin, M-.F. Achard, M. Pirot, H. Deleuze, R. Backov, “Inorganic monoliths hierarchically textured via concentrated direct emulsion and micellar templates,” J. Mat. Chem. 14, 1370–1376 (2004). [CrossRef]
  27. D. Barby, Z. Haq, “Low density porous cross-linked polymeric materials and their preparation,” Eur. Patent Appl.60138 (1982).
  28. M. J. Mooney, “The viscosity of a concentrated suspension of spherical particles,” J. Colloid. Interface Sci. 6, 162–170 (1951). [CrossRef]
  29. T. G. Mason, J. Bibette, D. A. Weitz, “Yielding and Flow of Monodisperse Emulsions,” J. Colloid. Interface Sci. 179, 439–448 (1996). [CrossRef]
  30. M.-P. Aronson, M.-F. Petko, “Highly Concentrated Water-in-Oil Emulsions: Influence of Electrolyte on Their Properties and Stability,” J. Colloid Interface Sci. 159, 134–149 (1993). [CrossRef]
  31. C. J. Brinker, G. W. Scherer, in Sol-Gel Science: the Physics and Chemistry of Sol-Gel Processing (Academic Press, San Diego, 1990).
  32. J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991). [CrossRef] [PubMed]
  33. L.-H. Wang, S. L. Jacques, L.-Q. Zheng, ”Monte Carlo modeling of photon transport in multi-layered tissues,” Computer Methods and Programs in Biomedicine 47, 131–146 (1995). [CrossRef]
  34. M. Xu, R. R. Alfano, “Random walk of polarized light in turbid media,” Phys. Rev. Lett. 95, 213901 (2005). [CrossRef] [PubMed]
  35. R. Elaloufi, R. Carminati, J.-J. Greffet, “Diffusive-to-ballistic transition in dynamic light transmission through thin scattering slabs: a radiative transfer approach,” J. Opt. Soc. Am. A 21, 1430–1437 (2004). [CrossRef]
  36. A. Sihvola, Electromagnetic Mixing Formulae and Applications (The Institution of Engineering and Technology, 1999). [CrossRef]
  37. A. S. Gittings, R. Bandyopadhyay, D. J. Durian, “Photon channelling in foams,” Europhys. Lett. 65, 414–419 (2004). [CrossRef]
  38. M. Schmiedeberg, M. F. Miri, H. Stark, “Photon channelling in foams,” Eur. Phys. J. E 18, 123–131 (2005). [CrossRef] [PubMed]
  39. T. Svensson, K. Vynck, M. Grisi, R. Savo, M. Burresi, D. S. Wiersma, “Holey random walks: Optics of heterogeneous turbid composites,” Phys. Rev. E 87, 022120 (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited