OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7524–7537

Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates

Tobias Schwab, Cornelius Fuchs, Reinhard Scholz, Alexander Zakhidov, Karl Leo, and Malte C. Gather  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7524-7537 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (8542 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bragg scattering at one-dimensional corrugated substrates allows to improve the light outcoupling from top-emitting organic light-emitting diodes (OLEDs). The OLEDs rely on a highly efficient phosphorescent pin stack and contain metal electrodes that introduce pronounced microcavity effects. A corrugated photoresist layer underneath the bottom electrode introduces light scattering. Compared to optically optimized reference OLEDs without the corrugated substrate, the corrugation increases light outcoupling efficiency but does not adversely affect the electrical properties of the devices. The external quantum efficiency (EQE) is increased from 15 % for an optimized planar layer structure to 17.5 % for a corrugated OLED with a grating period of 1.0 μm and a modulation depth of about 70 nm. Detailed analysis and optical modeling of the angular resolved emission spectra of the OLEDs provide evidence for Bragg scattering of waveguided and surface plasmon modes that are normally confined within the OLED stack into the air-cone. We observe constructive and destructive interference between these scattered modes and the radiative cavity mode. This interference is quantitatively described by a complex summation of Lorentz-like resonances.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(160.4890) Materials : Organic materials
(230.3670) Optical devices : Light-emitting diodes
(230.4000) Optical devices : Microstructure fabrication

ToC Category:

Original Manuscript: September 18, 2013
Revised Manuscript: November 28, 2013
Manuscript Accepted: December 19, 2013
Published: March 25, 2014

Tobias Schwab, Cornelius Fuchs, Reinhard Scholz, Alexander Zakhidov, Karl Leo, and Malte C. Gather, "Coherent mode coupling in highly efficient top-emitting OLEDs on periodically corrugated substrates," Opt. Express 22, 7524-7537 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. S. Reineke, F. Lindner, G. Schwartz, N. Seidler, K. Walzer, B. Lüssem, K. Leo, “White organic light-emitting diodes with fluorescent tube efficiency.” Nature 459, 234–238 (2009). [CrossRef] [PubMed]
  2. Z. B. Wang, M. G. Helander, J. Qiu, D. P. Puzzo, M. T. Greiner, Z. M. Hudson, S. Wang, Z. W. Liu, Z. H. Lu, “Unlocking the full potential of organic light-emitting diodes on flexible plastic,” Nat. Photonics 5, 753–757 (2011). [CrossRef]
  3. S. Hofmann, M. Thomschke, P. Freitag, M. Furno, B. Lüssem, K. Leo, “Top-emitting organic light-emitting diodes: Influence of cavity design,” Appl. Phys. Lett. 97, 253308 (2010). [CrossRef]
  4. T. Schwab, S. Schubert, S. Hofmann, M. Fröbel, C. Fuchs, M. Thomschke, L. Müller-Meskamp, K. Leo, M. C. Gather, “Highly efficient and color stable inverted white top-emitting OLEDs with ultra-thin wetting layer top electrodes,” Adv. Opt. Mater. 1, 707–713 (2013). [CrossRef]
  5. T. Schwab, S. Schubert, L. Müller-Meskamp, K. Leo, M. C. Gather, “Eliminating Micro-Cavity Effects in White Top-Emitting OLEDs by Ultra-Thin Metallic Top Electrodes,” Adv. Opt. Mater. 1, 921–925 (2013). [CrossRef]
  6. C. Adachi, M. A. Baldo, M. E. Thompson, S. R. Forrest, “Nearly 100% internal phosphorescence efficiency in an organic light-emitting device,” J. Appl. Phys. 90, 5048–5051 (2001). [CrossRef]
  7. B. J. Matterson, J. M. Lupton, a. F. Safonov, M. G. Salt, W. L. Barnes, I. D. W. Samuel, “Increased efficiency and controlled light output from a microstructured light-emitting diode,” Adv. Mater. 13, 123–127 (2001). [CrossRef]
  8. S. Wedge, W. Barnes, “Surface plasmon-polariton mediated light emission through thin metal films.” Opt. Express 12, 3673–3685 (2004). [CrossRef] [PubMed]
  9. R. Meerheim, M. Furno, S. Hofmann, B. Lüssem, K. Leo, “Quantification of energy loss mechanisms in organic light-emitting diodes,” Appl. Phys. Lett. 97, 253305 (2010). [CrossRef]
  10. S. Moeller, S. R. Forrest, “Improved light out-coupling in organic light emitting diodes employing ordered microlens arrays,” J. Appl. Phys. 91, 3324–3327 (2002). [CrossRef]
  11. H. Greiner, “Light extraction from organic light emitting diode substrates: Simulation and experiment,” Jpn. J. Appl. Phys. 46, 4125–4137 (2007). [CrossRef]
  12. T. C. Rosenow, M. Furno, S. Reineke, S. Olthof, B. Lüssem, K. Leo, “Highly efficient white organic light-emitting diodes based on fluorescent blue emitters,” J. Appl. Phys. 108, 113113 (2010). [CrossRef]
  13. N. Patel, S. Cina, J. Burroughes, “High-efficiency organic light-emitting diodes,” IEEE J. Sel. Top. Quantum Electron. 8, 346–361 (2002). [CrossRef]
  14. K. Saxena, V. Jain, D. S. Mehta, “A review on the light extraction techniques in organic electroluminescent devices,” Opt. Mater. 32, 221–233 (2009). [CrossRef]
  15. B. J. Scholz, J. Frischeisen, A. Jaeger, D. S. Setz, T. C. Reusch, W. Brütting, “Extraction of surface plasmons in organic light-emitting diodes via high-index coupling,” Opt. Express 20, A205–A212 (2012). [CrossRef] [PubMed]
  16. M. Thomschke, S. Reineke, B. Lüssem, K. Leo, “Highly efficient white top-emitting organic light-emitting diodes comprising laminated microlens films.” Nano Letters 12, 424–428 (2012). [CrossRef]
  17. T. W. Canzler, S. Murano, D. Pavicic, O. Fadhel, C. Rothe, A. Haldi, M. Hofmann, Q. Huang, “Efficiency enhancement in white PIN OLEDs by simple internal outcoupling methods,” SID Symp. Dig. Tech. Papers 42, 975–978 (2011). [CrossRef]
  18. Z. Wang, Z. Chen, L. Xiao, Q. Gong, “Enhancement of top emission for organic light-emitting diode via scattering surface plasmons by nano-aggregated outcoupling layer,” Org. Electron. 10, 341–345 (2009). [CrossRef]
  19. S.-Y. Nien, N.-F. Chiu, Y.-H. Ho, J.-H. Lee, C.-W. Lin, K.-C. Wu, C.-K. Lee, J.-R. Lin, M.-K. Wei, T.-L. Chiu, “Directional photoluminescence enhancement of organic emitters via surface plasmon coupling,” Appl. Phys. Lett. 94, 103304 (2009). [CrossRef]
  20. J. Frischeisen, Q. Niu, A. Abdellah, J. B. Kinzel, R. Gehlhaar, G. Scarpa, C. Adachi, P. Lugli, W. Brütting, “Light extraction from surface plasmons and waveguide modes in an organic light-emitting layer by nanoim-printed gratings.” Opt. Express 19, A7–A19 (2011). [CrossRef]
  21. J. M. Ziebarth, A. K. Saafir, S. Fan, M. D. McGehee, “Extracting light from polymer light-emitting diodes using stamped Bragg gratings,” Adv. Funct. Mater. 14, 451–456 (2004). [CrossRef]
  22. Y. Bai, J. Feng, Y.-F. Liu, J.-F. Song, J. Simonen, Y. Jin, Q.-D. Chen, J. Zi, H.-B. Sun, “Outcoupling of trapped optical modes in organic light-emitting devices with one-step fabricated periodic corrugation by laser ablation,” Org. Electron. 12, 1927–1935 (2011). [CrossRef]
  23. Y.-G. Bi, J. Feng, Y.-F. Li, Y. Jin, Y.-F. Liu, Q.-D. Chen, H.-B. Sun, “Enhanced efficiency of organic light-emitting devices with metallic electrodes by integrating periodically corrugated structure,” Appl. Phys. Lett. 100, 053304 (2012). [CrossRef]
  24. T. Bocksrocker, J. B. Preinfalk, J. Asche-Tauscher, A. Pargner, C. Eschenbaum, F. Maier-Flaig, U. Lemmer, “White organic light emitting diodes with enhanced internal and external outcoupling for ultra-efficient light extraction and Lambertian emission.” Opt. Express 20, A932–A940 (2012). [CrossRef] [PubMed]
  25. Y. Jin, J. Feng, X.-L. Zhang, Y.-G. Bi, Y. Bai, L. Chen, T. Lan, Y.-F. Liu, Q.-D. Chen, H.-B. Sun, “Solving efficiency-stability tradeoff in top-emitting organic light-emitting devices by employing periodically corrugated metallic cathode.” Adv. Mater. 24, 1187–1191 (2012). [CrossRef] [PubMed]
  26. U. Geyer, J. Hauss, B. Riedel, S. Gleiss, U. Lemmer, M. Gerken, “Large-scale patterning of indium tin oxide electrodes for guided mode extraction from organic light-emitting diodes,” J. Appl. Phys. 104, 093111 (2008). [CrossRef]
  27. B. Riedel, J. Hauss, U. Geyer, J. Guetlein, U. Lemmer, M. Gerken, “Enhancing outcoupling efficiency of indium-tin-oxide-free organic light-emitting diodes via nanostructured high index layers,” Appl. Phys. Lett. 96, 243302 (2010). [CrossRef]
  28. C. Fuchs, T. Schwab, T. Roch, S. Eckardt, A. Lasagni, S. Hofmann, B. Lüssem, L. Müller-Meskamp, K. Leo, M. C. Gather, R. Scholz, “Quantitative allocation of Bragg scattering effects in highly efficient OLEDs fabricated on periodically corrugated substrates,” Opt. Express 21, 16319–16330 (2013). [CrossRef] [PubMed]
  29. M. Pfeiffer, “Doped organic semiconductors: Physics and application in light emitting diodes,” Org. Electron. 4, 89–103 (2003). [CrossRef]
  30. Q. Huang, K. Walzer, M. Pfeiffer, K. Leo, M. Hofmann, “Performance improvement of top-emitting organic light-emitting diodes by an organic capping layer: An experimental study,” J. Appl. Phys. 100, 064507 (2006). [CrossRef]
  31. M. Furno, R. Meerheim, S. Hofmann, B. Lüssem, K. Leo, “Efficiency and rate of spontaneous emission in organic electroluminescent devices,” Phys. Rev. B 85, 115205 (2012). [CrossRef]
  32. M. Thomschke, R. Nitsche, M. Furno, K. Leo, “Optimized efficiency and angular emission characteristics of white top-emitting organic electroluminescent diodes,” Appl. Phys. Lett. 94, 083303 (2009). [CrossRef]
  33. H. Rigneault, F. Lemarchand, A. Sentenac, “Dipole radiation into grating structures,” J. Opt. Soc. Am. A 17, 1048–1058 (2000). [CrossRef]
  34. J. Hauss, T. Bocksrocker, B. Riedel, U. Lemmer, M. Gerken, “On the interplay of waveguide modes and leaky modes in corrugated OLEDs,” Opt. Express 19, A851–A858 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited