OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7550–7558

Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power

Vitaly Rymanov, Andreas Stöhr, Sebastian Dülme, and Tolga Tekin  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7550-7558 (2014)
http://dx.doi.org/10.1364/OE.22.007550


View Full Text Article

Enhanced HTML    Acrobat PDF (2191 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We report on a novel triple transit region (TTR) layer structure for 1.55 μm waveguide photodiodes (PDs) providing high output power in the millimeter wave (mmW) regime. Basically, the TTR-PD layer structure consists of three transit layers, in which electrons drift at saturation velocity or even at overshoot velocity. Sufficiently strong electric fields (>3000 V/cm) are achieved in all three transit layers even in the undepleted absorber layer and even at very high optical input power levels. This is achieved by incorporating three 10 nm thick p-doped electric field clamp layers. Numerical simulations using the drift-diffusion model (DDM) indicate that for optical intensities up to ~500 kW/cm2, no saturation effects occur, i.e. the electric field exceeds the critical electric field in all three transit layers. This fact in conjunction with a high-frequency double-mushroom cross-section of the waveguide TTR-PD ensures high output power levels at mmW frequencies. Fabricated 1.55 µm InGaAs(P)/InP waveguide TTR-PDs exhibit output power levels exceeding 0 dBm (1 mW) and a return loss (RL) up to ~24 dB. Broadband operation with a 3 dB bandwidth beyond 110 GHz is achieved.

© 2014 Optical Society of America

OCIS Codes
(040.5160) Detectors : Photodetectors
(230.5170) Optical devices : Photodiodes
(230.7370) Optical devices : Waveguides
(250.0250) Optoelectronics : Optoelectronics
(250.5300) Optoelectronics : Photonic integrated circuits
(060.5625) Fiber optics and optical communications : Radio frequency photonics

ToC Category:
Optoelectronics

History
Original Manuscript: December 11, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 24, 2014
Published: March 25, 2014

Citation
Vitaly Rymanov, Andreas Stöhr, Sebastian Dülme, and Tolga Tekin, "Triple transit region photodiodes (TTR-PDs) providing high millimeter wave output power," Opt. Express 22, 7550-7558 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7550


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. T. Nagatsuma, H. Ito, T. Ishibashi, “High-power RF photodiodes and their applications,” Laser Photonics Rev. 3(1–2), 123–137 (2009). [CrossRef]
  2. T.-F. Tseng, J.-M. Wun, W. Chen, S.-W. Peng, J.-W. Shi, C.-K. Sun, “High-depth-resolution 3-dimensional radar-imaging system based on a few-cycle W-band photonic millimeter-wave pulse generator,” Opt. Express 21(12), 14109–14119 (2013). [CrossRef] [PubMed]
  3. A. Stöhr, “Photonic millimeter-wave generation and its applications in high data rate wireless access,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2010), 7–10. [CrossRef]
  4. A. Stöhr, S. Babiel, P. J. Cannard, B. Charbonnier, F. van Dijk, S. Fedderwitz, D. Moodie, L. Pavlovic, L. Ponnampalam, C. C. Renaud, D. Rogers, V. Rymanov, A. J. Seeds, A. G. Steffan, A. Umbach, M. Weiß, “Millimeter-wave photonic components for broadband wireless systems,” IEEE Trans. Microwave Theory Technol. 58(11), 3071–3082 (2010). [CrossRef]
  5. S. König, D. Lopez-Diaz, J. Antes, F. Boes, R. Henneberger, A. Leuther, A. Tessmann, R. Schmogrow, D. Hillerkuss, R. Palmer, T. Zwick, C. Koos, W. Freude, O. Ambacher, J. Leuthold, I. Kallfass, “Wireless sub-THz communication system with high data rate,” Nat. Photonics 7(12), 977–981 (2013). [CrossRef]
  6. C. C. Renaud, “Ultra-high-speed uni-traveling carrier photodiodes and their applications,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3. [CrossRef]
  7. E. Rouvalis, M. Chtioui, M. Tran, F. Lelarge, F. van Dijk, M. J. Fice, C. C. Renaud, G. Carpintero, A. J. Seeds, “High-speed photodiodes for InP-based photonic integrated circuits,” Opt. Express 20(8), 9172–9177 (2012). [CrossRef] [PubMed]
  8. A. Beling, A. S. Cross, M. Piels, J. Peters, Y. Fu, Q. Zhou, J. E. Bowers, and J. C. Campbell, “High-power high-speed waveguide photodiodes and photodiode arrays heterogeneously integrated on siliconon-insulator,” in Optical Fiber Communication Conference and Exposition and the National Fiber Optic Engineers Conference (OFC/NFOEC) (2013), 1–3. [CrossRef]
  9. T. Ishibashi, S. Kodama, N. Shimizu, T. Furuta, “High-speed response of uni-traveling-carrier photodiodes,” Jpn. J. Appl. Phys. 36(10), 6263–6268 (1997). [CrossRef]
  10. M. Chtioui, F. Lelarge, A. Enard, F. Pommereau, D. Carpentier, A. Marceaux, F. Van Dijk, M. Achouche, “High responsivity and high power UTC and MUTC GaInAs-InP photodiodes,” IEEE Photonics Technol. Lett. 24(4), 318–320 (2012). [CrossRef]
  11. H. Pan, A. Beling, H. Chen, J. C. Campbell, “Characterization and optimization of high-power InGaAs/InP photodiodes,” Opt. Quantum Electron. 40(1), 41–46 (2008). [CrossRef]
  12. T. Ishibashi, T. Furuta, H. Fushimi, H. Ito, “Photoresponse characteristics of uni-traveling-carrier photodiodes,” Proc. SPIE 4283, 469–479 (2001). [CrossRef]
  13. K. J. Williams, “Comparisons between dual-depletion-region and uni-travelling-carrier p-i-n photodetectors,” IEE Proc. Optoelectron. 149(4), 131–137 (2002). [CrossRef]
  14. S. Srivastava, K. P. Roenker, “Numerical modeling study of the InP/InGaAs uni-travelling carrier photodiode,” Solid-State Electron. 48(3), 461–470 (2004). [CrossRef]
  15. Y. M. El-Batawy, M. J. Deen, “Modeling of mushroom waveguide photodetector,” J. Vac. Sci. Technol. A 22(3), 811–815 (2004). [CrossRef]
  16. V. Rymanov, T. Tekin, A. Stöhr, “Double mushroom 1.55 μm waveguide photodetectors for integrated E-band (60-90 GHz) wireless transmitter modules,” Proc. SPIE 8259, 82590E (2012). [CrossRef]
  17. Y.-G. Wey, K. Giboney, J. Bowers, M. Rodwell, P. Silvestre, P. Thiagarajan, G. Robinson, “110-GHz GaInAs/InP double heterostructure p-i-n photodetectors,” J. Lightwave Technol. 13(7), 1490–1499 (1995). [CrossRef]
  18. D. Pasalic, R. Vahldieck, “Hybrid drift-diffusion-TLM analysis of high-speed and high-output UTC traveling-wave photodetectors,” Int. J. Numer. Model. Electron. Networks Devices Fields 21(1–2), 61–76 (2008). [CrossRef]
  19. P. S. Menon, K. Kandiah, A. A. Ehsan, S. Shaari, “Concentration-dependent minority carrier lifetime in an In0.53Ga0.47As interdigitated lateral PIN photodiode model based on spin-on chemical fabrication methodology,” Int. J. Numer. Model. Electron. Networks Devices Fields 24(5), 465–477 (2011). [CrossRef]
  20. V. Rymanov, M. Palandöken, S. Lutzmann, B. Bouhlal, T. Tekin, and A. Stöhr, “Integrated photonic 71-76 GHz transmitter module employing high linearity double mushroom-type 1.55 μm waveguide photodiodes,” in IEEE International Topical Meeting on Microwave Photonics (MWP) (2012), 253–256. [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited