OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7559–7573

Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy

Márton Zsolt Kiss, Benedek J. Nagy, Péter Lakatos, Zoltán Göröcs, Szabolcs Tőkés, Balázs Wittner, and László Orzó  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7559-7573 (2014)
http://dx.doi.org/10.1364/OE.22.007559


View Full Text Article

Enhanced HTML    Acrobat PDF (1623 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We introduce a color imaging method in our digital holographic microscope system (DHM). This DHM can create color images of freely floating, or moving objects inside a large volume by simultaneously capturing three holograms using three different illumination wavelengths. In this DHM a new light source assembly is applied, where we use single mode fibers according to the corresponding wavelengths that are tightly and randomly arranged into a small array in a single FC/PC connector. This design has significant advantages over the earlier approaches, where all the used illuminations are coupled in the same fiber. It avoids the coupling losses and provides a cost effective, compact solution for multicolor coherent illumination. We explain how to determine and correct the different fiber end positions caused tilt aberration during the hologram reconstruction process. To demonstrate the performance of the device, color hologram reconstructions are presented that can achieve at least 1 µm lateral resolution.

© 2014 Optical Society of America

OCIS Codes
(100.2000) Image processing : Digital image processing
(100.3010) Image processing : Image reconstruction techniques
(180.3170) Microscopy : Interference microscopy
(090.1995) Holography : Digital holography

ToC Category:
Microscopy

History
Original Manuscript: December 26, 2013
Revised Manuscript: February 5, 2014
Manuscript Accepted: February 8, 2014
Published: March 25, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Márton Zsolt Kiss, Benedek J. Nagy, Péter Lakatos, Zoltán Göröcs, Szabolcs Tőkés, Balázs Wittner, and László Orzó, "Special multicolor illumination and numerical tilt correction in volumetric digital holographic microscopy," Opt. Express 22, 7559-7573 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7559


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. Gábor, “A new microscopic principle,” Nature 161(4098), 777–778 (1948). [CrossRef] [PubMed]
  2. P. Hariharan, Optical Holography: Principles, Techniques and Applications (Cambridge University, 1996), Vol. 20.
  3. U. Schnars and W. Jueptner, Digital holography (Springer, 2005).
  4. C. Mann, L. Yu, C.-M. Lo, M. Kim, “High-resolution quantitative phase-contrast microscopy by digital holography,” Opt. Express 13(22), 8693–8698 (2005). [CrossRef] [PubMed]
  5. J. Garcia-Sucerquia, W. Xu, S. K. Jericho, P. Klages, M. H. Jericho, H. J. Kreuzer, “Digital in-line holographic microscopy,” Appl. Opt. 45(5), 836–850 (2006). [CrossRef] [PubMed]
  6. Z. Göröcs, A. Ozcan, “On-chip biomedical imaging,” IEEE Rev. Biomed. Eng. 6, 29–46 (2013).
  7. T. Shimobaba, Y. Sato, J. Miura, M. Takenouchi, T. Ito, “Real-time digital holographic microscopy using the graphic processing unit,” Opt. Express 16(16), 11776–11781 (2008). [CrossRef] [PubMed]
  8. L. Orzó, Z. Göröcs, I. Szatmári, and S. Tőkés, “Gpu implementation of volume reconstruction and object detection in digital holographic microscopy,” in “Cellular Nanoscale Networks and Their Applications (CNNA), 2010 12th International Workshop on,” (IEEE, 2010), pp. 1–4. [CrossRef]
  9. T. Shimobaba, J. Weng, T. Sakurai, N. Okada, T. Nishitsuji, N. Takada, A. Shiraki, N. Masuda, T. Ito, “Computational wave optics library for C++: CWO++ library,” Comput. Phys. Commun. 183(5), 1124–1138 (2012). [CrossRef]
  10. A. F. Coskun, T.-W. Su, A. Ozcan, “Wide field-of-view lens-free fluorescent imaging on a chip,” Lab Chip 10(7), 824–827 (2010). [CrossRef] [PubMed]
  11. W. Bishara, T.-W. Su, A. F. Coskun, A. Ozcan, “Lensfree on-chip microscopy over a wide field-of-view using pixel super-resolution,” Opt. Express 18(11), 11181–11191 (2010). [CrossRef] [PubMed]
  12. J. Kühn, F. Charrière, T. Colomb, E. Cuche, F. Montfort, Y. Emery, P. Marquet, C. Depeursinge, “Axial sub-nanometer accuracy in digital holographic microscopy,” Meas. Sci. Technol. 19(7), 074007 (2008). [CrossRef]
  13. P. Marquet, B. Rappaz, P. J. Magistretti, E. Cuche, Y. Emery, T. Colomb, C. Depeursinge, “Digital holographic microscopy: a noninvasive contrast imaging technique allowing quantitative visualization of living cells with subwavelength axial accuracy,” Opt. Lett. 30(5), 468–470 (2005). [CrossRef] [PubMed]
  14. I. Yamaguchi, J. Kato, S. Ohta, J. Mizuno, “Image formation in phase-shifting digital holography and applications to microscopy,” Appl. Opt. 40(34), 6177–6186 (2001). [CrossRef] [PubMed]
  15. T. Colomb, J. Kühn, F. Charrière, C. Depeursinge, P. Marquet, N. Aspert, “Total aberrations compensation in digital holographic microscopy with a reference conjugated hologram,” Opt. Express 14(10), 4300–4306 (2006). [CrossRef] [PubMed]
  16. S. Yeom, I. Moon, B. Javidi, “Real-time 3-D sensing, visualization and recognition of dynamic biological microorganisms,” Proc. IEEE 94(3), 550–566 (2006). [CrossRef]
  17. I. Moon, M. Daneshpanah, B. Javidi, A. Stern, “Automated three-dimensional identification and tracking of micro/nanobiological organisms by computational holographic microscopy,” Proc. IEEE 97(6), 990–1010 (2009). [CrossRef]
  18. L. Repetto, F. Pellistri, E. Piano, C. Pontiggia, “Gabor’s hologram in a modern perspective,” Am. J. Phys. 72(7), 964–967 (2004). [CrossRef]
  19. Z. Göröcs, M. Kiss, V. Tóth, L. Orzó, and S. Tőkés, “Multicolor digital holographic microscope (DHM) for biological purposes,” in “BiOS,” (International Society for Optics and Photonics, 2010), p. 75681P.
  20. Z. Göröcs, L. Orzó, M. Kiss, V. Tóth, and S. Tőkés, “In-line color digital holographic microscope for water quality measurements,” in “Laser Applications in Life Sciences 2010,” (International Society for Optics and Photonics, 2010), p. 737614.
  21. W. Xu, M. H. Jericho, I. A. Meinertzhagen, H. J. Kreuzer, “Digital in-line holography for biological applications,” Proc. Natl. Acad. Sci. U.S.A. 98(20), 11301–11305 (2001). [CrossRef] [PubMed]
  22. A. Greenbaum, A. Feizi, N. Akbari, A. Ozcan, “Wide-field computational color imaging using pixel super-resolved on-chip microscopy,” Opt. Express 21(10), 12469–12483 (2013). [CrossRef] [PubMed]
  23. A. Greenbaum, N. Akbari, A. Feizi, W. Luo, A. Ozcan, “Field-portable pixel super-resolution colour microscope,” PLoS ONE 8(9), e76475 (2013). [CrossRef] [PubMed]
  24. F. Shen, A. Wang, “Fast-Fourier-transform based numerical integration method for the Rayleigh-Sommerfeld diffraction formula,” Appl. Opt. 45(6), 1102–1110 (2006). [CrossRef] [PubMed]
  25. L. Repetto, E. Piano, C. Pontiggia, “Lensless digital holographic microscope with light-emitting diode illumination,” Opt. Lett. 29(10), 1132–1134 (2004). [CrossRef] [PubMed]
  26. O. Mudanyali, D. Tseng, C. Oh, S. O. Isikman, I. Sencan, W. Bishara, C. Oztoprak, S. Seo, B. Khademhosseini, A. Ozcan, “Compact, light-weight and cost-effective microscope based on lensless incoherent holography for telemedicine applications,” Lab Chip 10(11), 1417–1428 (2010). [CrossRef] [PubMed]
  27. J. Alda, Laser and Gaussian Beam Propagation and Transformation, Encyclopedia of Optical Engineering (Taylor & Francis, 2007).
  28. W. Bishara, U. Sikora, O. Mudanyali, T.-W. Su, O. Yaglidere, S. Luckhart, A. Ozcan, “Holographic pixel super-resolution in portable lensless on-chip microscopy using a fiber-optic array,” Lab Chip 11(7), 1276–1279 (2011). [CrossRef] [PubMed]
  29. H.-J. Cho, D.-C. Kim, Y.-H. Yu, S. Shin, W. Jung, “Tilt aberration compensation using interference patterns in digital holography,” J. Opt. Soc. Korea 13(4), 451–455 (2009). [CrossRef]
  30. E. Cuche, P. Marquet, C. Depeursinge, “Aperture apodization using cubic spline interpolation: application in digital holographic microscopy,” Opt. Commun. 182(1-3), 59–69 (2000). [CrossRef]
  31. K. Matsushima, T. Shimobaba, “Band-limited angular spectrum method for numerical simulation of free-space propagation in far and near fields,” Opt. Express 17(22), 19662–19673 (2009). [CrossRef] [PubMed]
  32. J. W. Goodman, Introduction to Fourier Optics (Roberts and Company Publishers, 2005).
  33. P. Ferraro, S. Grilli, L. Miccio, D. Alfieri, S. De Nicola, A. Finizio, B. Javidii, “Full color 3-D imaging by digital holography and removal of chromatic aberrations,” J. Displ. Technol. 4(1), 97–100 (2008). [CrossRef]
  34. A. E. Siegman, Lasers University Science Books (Mill Valley, 1986), Vol. 37.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited