OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7657–7668

Nanofocusing optics for synchrotron radiation made from polycrystalline diamond

O. J. L. Fox, L. Alianelli, A. M. Malik, I. Pape, P. W. May, and K. J. S. Sawhney  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7657-7668 (2014)
http://dx.doi.org/10.1364/OE.22.007657


View Full Text Article

Enhanced HTML    Acrobat PDF (1901 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Diamond possesses many extreme properties that make it an ideal material for fabricating nanofocusing x-ray optics. Refractive lenses made from diamond are able to focus x-ray radiation with high efficiency but without compromising the brilliance of the beam. Electron-beam lithography and deep reactive-ion etching of silicon substrates have been used in a transfer-molding technique to fabricate diamond optics with vertical and smooth sidewalls. Latest generation compound refractive lenses have seen an improvement in the quality and uniformity of the optical structures, resulting in an increase in their focusing ability. Synchrotron beamline tests of two recent lens arrays, corresponding to two different diamond morphologies, are described. Focal line-widths down to 210 nm, using a nanocrystalline diamond lens array and a beam energy of E = 11 keV, and 230 nm, using a microcrystalline diamond lens at E = 15 keV, have been measured using the Diamond Light Source Ltd. B16 beamline. This focusing prowess is combined with relatively high transmission through the lenses compared with silicon refractive designs and other diffractive optics.

© 2014 Optical Society of America

OCIS Codes
(220.3630) Optical design and fabrication : Lenses
(340.0340) X-ray optics : X-ray optics

ToC Category:
X-ray Optics

History
Original Manuscript: October 29, 2013
Revised Manuscript: January 8, 2014
Manuscript Accepted: January 12, 2014
Published: March 26, 2014

Citation
O. J. L. Fox, L. Alianelli, A. M. Malik, I. Pape, P. W. May, and K. J. S. Sawhney, "Nanofocusing optics for synchrotron radiation made from polycrystalline diamond," Opt. Express 22, 7657-7668 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7657


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. E. Ice, J. D. Budai, J. W. L. Pang, “The Race to X-ray Microbeam and Nanobeam Science,” Science 334(6060), 1234–1239 (2011). [CrossRef] [PubMed]
  2. L. Alianelli, K. J. S. Sawhney, R. Barrett, I. Pape, A. M. Malik, M. C. Wilson, “High efficiency nano-focusing kinoform optics for synchrotron radiation,” Opt. Express 19(12), 11120–11127 (2011). [CrossRef] [PubMed]
  3. M. Sanchez del Rio, L. Alianelli, “Aspherical lens shapes for focusing synchrotron beams,” J. Synchrotron Radiat. 19(3), 366–374 (2012). [CrossRef] [PubMed]
  4. H. C. Kang, H. Yan, R. P. Winarski, M. V. Holt, J. Maser, C. Liu, R. Conley, S. Vogt, A. T. Macrander, G. B. Stephenson, “Focusing of hard x-rays to 16 nanometers with a multilayer Laue lens,” Appl. Phys. Lett. 92(22), 221114 (2008). [CrossRef]
  5. K. Jefimovs, J. Vila-Comamala, T. Pilvi, J. Raabe, M. Ritala, C. David, “Zone-doubling technique to produce ultrahigh-resolution x-ray optics,” Phys. Rev. Lett. 99(26), 264801 (2007). [CrossRef] [PubMed]
  6. C. David, S. Gorelick, S. Rutishauser, J. Krzywinski, J. Vila-Comamala, V. A. Guzenko, O. Bunk, E. Färm, M. Ritala, M. Cammarata, D. M. Fritz, R. Barrett, L. Samoylova, J. Grünert, H. Sinn, “Nanofocusing of hard X-ray free electron laser pulses using diamond based Fresnel zone plates,” Sci. Rep. 1, 57 (2011). [CrossRef] [PubMed]
  7. E. Di Fabrizio, F. Romanato, M. Gentili, S. Cabrini, B. Kaulich, J. Susini, R. Barrett, “High-efficiency multilevel zone plates for keV X-rays,” Nature 401(6756), 895–898 (1999). [CrossRef]
  8. A. A. Snigirev, V. Kohn, I. Snigireva, B. Lengeler, “A compound refractive lens for focusing high-energy X-rays,” Nature 384(6604), 49–51 (1996). [CrossRef]
  9. V. Aristov, M. Grigoriev, S. Kuznetsov, L. Shabelnikov, V. Yunkin, T. Weitkamp, C. Rau, I. Snigireva, A. A. Snigirev, M. Hoffmann, E. Voges, “X-ray refractive planar lens with minimized absorption,” Appl. Phys. Lett. 77(24), 4058–4060 (2000). [CrossRef]
  10. B. Nöhammer, J. Hoszowska, A. K. Freund, C. David, “Diamond planar refractive lenses for third- and fourth-generation X-ray sources,” J. Synchrotron Radiat. 10(2), 168–171 (2003). [CrossRef] [PubMed]
  11. K. Evans-Lutterodt, J. M. Ablett, A. Stein, C. C. Kao, D. M. Tennant, F. Klemens, A. Taylor, C. Jacobsen, P. L. Gammel, H. Huggins, G. Bogart, S. Ustin, L. Ocola, “Single-element elliptical hard x-ray micro-optics,” Opt. Express 11(8), 919–926 (2003). [CrossRef] [PubMed]
  12. C. G. Schroer, O. Kurapova, J. Patommel, P. Boye, J. Feldkamp, B. Lengeler, M. Burghammer, C. Riekel, L. Vincze, A. van der Hart, M. Küchler, “Hard x-ray nanoprobe based on refractive x-ray lenses,” Appl. Phys. Lett. 87(12), 124103 (2005). [CrossRef]
  13. L. Alianelli, K. J. S. Sawhney, M. K. Tiwari, I. P. Dolbnya, R. Stevens, D. W. K. Jenkins, I. M. Loader, M. C. Wilson, A. M. Malik, “Characterization of germanium linear kinoform lenses at Diamond Light Source,” J. Synchrotron Radiat. 16(3), 325–329 (2009). [CrossRef] [PubMed]
  14. C. G. Schroer, M. Kuhlmann, J. Patommel, U. T. Hunger, T. F. Gunzler, O. Kurapova, S. Feste, M. Drakopoulos, A. Somogyi, A. S. Simionovici, A. A. Snigirev, I. Snigireva, C. Schug, W. H. Schroder, “Nanofocusing parabolic refractive x-ray lenses,” Appl. Phys. Lett. 82(9), 1485–1487 (2003). [CrossRef]
  15. K. Evans-Lutterodt, A. Stein, J. M. Ablett, N. Bozovic, A. Taylor, D. M. Tennant, “Using compound kinoform hard-x-ray lenses to exceed the critical angle limit,” Phys. Rev. Lett. 99(13), 134801 (2007). [CrossRef] [PubMed]
  16. C. G. Schroer, B. Lengeler, “Focusing Hard X Rays to Nanometer Dimensions by Adiabatically Focusing Lenses,” Phys. Rev. Lett. 94(5), 054802 (2005). [CrossRef] [PubMed]
  17. A. F. Isakovic, A. Stein, J. B. Warren, S. Narayanan, M. Sprung, A. R. Sandy, K. Evans-Lutterodt, “Diamond kinoform hard X-ray refractive lenses: design, nanofabrication and testing,” J. Synchrotron Radiat. 16(1), 8–13 (2009). [CrossRef] [PubMed]
  18. L. Alianelli, K. J. S. Sawhney, A. M. Malik, O. J. L. Fox, P. W. May, R. Stevens, I. M. Loader, M. C. Wilson, “A planar refractive x-ray lens made of nanocrystalline diamond,” J. Appl. Phys. 108(12), 123107 (2010). [CrossRef]
  19. A. A. Snigirev, V. Yunkin, I. Snigireva, M. Di Michiel, M. Drakopoulos, S. Kouznetsov, L. Shabel’nikov, M. Grigoriev, V. Ralchenko, I. Sychov, M. Hoffmann, E. I. Voges, “Diamond refractive lens for hard X-ray focusing,” Proc. SPIE 4783, 1–9 (2002). [CrossRef]
  20. C. Ribbing, B. Cederström, M. Lundqvist, “Microstructured diamond X-ray source and refractive lens,” Diamond Related Materials 12(10-11), 1793–1799 (2003). [CrossRef]
  21. A. M. Malik, O. J. L. Fox, L. Alianelli, A. M. Korsunsky, R. Stevens, I. M. Loader, M. C. Wilson, I. Pape, K. J. S. Sawhney, P. W. May, “Deep reactive ion etching of silicon moulds for the fabrication of diamond x-ray focusing lenses,” J. Micromech. Microeng. 23(12), 125018 (2013). [CrossRef]
  22. O. Kurapova, B. Lengeler, C. G. Schroer, M. Küchler, T. Gessner, A. van der Hart, “Optimized fabrication of silicon nanofocusing x-ray lenses using deep reactive ion etching,” J. Vac. Sci. Technol. B 25(5), 1626 (2007). [CrossRef]
  23. P. Boye, J. M. Feldkamp, J. Patommel, A. Schwab, S. Stephan, R. Hoppe, C. G. Schroer, M. Burghammer, C. Riekel, A. van der Hart, M. Küchler, “Nanofocusing refractive X-ray lenses: Fabrication and modeling,” J. Phys. Conf. Ser. 186, 012063 (2009). [CrossRef]
  24. O. J. L. Fox, J. O. P. Holloway, G. M. Fuge, P. W. May, and M. N. R. Ashfold, “Electrospray Deposition of Diamond Nanoparticle Nucleation Layers for Subsequent CVD Diamond Growth,” MRS Proceedings, 1203, 1203–J17–27 (2009). [CrossRef]
  25. P. W. May, Y. A. Mankelevich, “From ultrananocrystalline diamond to single crystal diamond growth in hot filament and microwave plasma-enhanced CVD reactors: a unified model for growth rates and grain sizes,” J. Phys. Chem. C 112(32), 12432–12441 (2008). [CrossRef]
  26. J. C. Richley, O. J. L. Fox, M. N. R. Ashfold, Y. A. Mankelevich, “Combined experimental and modeling studies of microwave activated CH4/H2/Ar plasmas for microcrystalline, nanocrystalline, and ultrananocrystalline diamond deposition,” J. Appl. Phys. 109(6), 063307 (2011). [CrossRef]
  27. J. E. Butler, I. Oleynik, “A mechanism for crystal twinning in the growth of diamond by chemical vapour deposition,” Philos Trans A Math Phys Eng Sci 366(1863), 295–311 (2008). [CrossRef] [PubMed]
  28. K. J. S. Sawhney, I. P. Dolbnya, M. K. Tiwari, L. Alianelli, S. M. Scott, G. M. Preece, U. K. Pedersen, R. D. Walton, R. Garrett, I. Gentle, K. Nugent, S. Wilkins, “A Test Beamline on Diamond Light Source,” AIP Conf. Proc. 1234, 387–390 (2010). [CrossRef]
  29. V. V. Aristov, M. V. Grigoriev, S. M. Kuznetsov, L. G. Shabelnikov, V. A. Yunkin, M. Hoffmann, E. Voges, “X-ray focusing by planar parabolic refractive lenses made of silicon,” Opt. Commun. 177(1-6), 33–38 (2000). [CrossRef]
  30. B. Lengeler, C. G. Schroer, J. Tümmler, B. Benner, M. Richwin, A. A. Snigirev, I. Snigireva, M. Drakopoulos, “Imaging by parabolic refractive lenses in the hard X-ray range,” J. Synchrotron Radiat. 6(6), 1153–1167 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited