OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7669–7677

The sensing characteristics of plasmonic waveguide with a ring resonator

Tiesheng Wu, Yumin Liu, Zhongyuan Yu, Yiwei Peng, Changgan Shu, and Han Ye  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7669-7677 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1324 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A surface plasmon polaritons (SPPs) refractive index sensor which consists of two metal-insulator-metal (MIM) waveguides coupled to each other by a ring resonator is proposed. The transmission properties are numerically simulated by finite element method. The sensing characteristics of such structure are systematically analyzed by investigating the transmission spectrum. The results indicate that there exist three resonance peaks in the transmission spectrum, and all of which have a linear relationship with the refractive index of the material under sensing. Through the optimization of structural parameters, we achieve a theoretical value of the refractive index sensitivity as high as 3460nmRIU−1. Furthermore, this structure can also be used as a temperature sensor with temperature sensitivity of 1.36nm/°C. This work paves the way toward sensitive nanometer scale refractive index sensor and temperature sensor for design and application.

© 2014 Optical Society of America

OCIS Codes
(130.6010) Integrated optics : Sensors
(140.4780) Lasers and laser optics : Optical resonators
(230.0230) Optical devices : Optical devices
(240.6680) Optics at surfaces : Surface plasmons

ToC Category:

Original Manuscript: November 27, 2013
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 14, 2014
Published: March 26, 2014

Tiesheng Wu, Yumin Liu, Zhongyuan Yu, Yiwei Peng, Changgan Shu, and Han Ye, "The sensing characteristics of plasmonic waveguide with a ring resonator," Opt. Express 22, 7669-7677 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. V. V. Temnov, G. Armelles, U. Woggon, D. Guzatov, A. Cebollada, A. Garcia-Martin, J.-M. Garcia-Martin, T. Thomay, A. Leitenstorfer, R. Bratschitsch, “Active magneto-plasmonics in hybrid metal-ferromagnet structures,” Nat. Photonics 4(2), 107–111 (2010). [CrossRef]
  2. D. Martín-Becerra, J. B. González-Díaz, V. V. Temnov, A. Cebollada, G. Armelles, T. Thomay, A. Leitenstorfer, R. Bratschitsch, A. García-Martín, M. U. González, “Enhancement of the magnetic modulation of surface plasmon polaritons in Au/Co/Au films,” Appl. Phys. Lett. 97(18), 183114 (2010). [CrossRef]
  3. F. Fan, S. Chen, X. H. Wang, S. J. Chang, “Tunable nonreciprocal terahertz transmission and enhancement based on metal/magneto-optic plasmonic lens,” Opt. Express 21(7), 8614–8621 (2013). [CrossRef] [PubMed]
  4. A. Dolatabady, N. Granpayeh, V. F. Nezhad, “A nanoscale refractive index sensor in two dimensional plasmonic waveguide with nanodisk resonator,” Opt. Commun. 300, 265–268 (2013). [CrossRef]
  5. V. E. Bochenkov, M. Frederiksen, D. S. Sutherland, “Enhanced refractive index sensitivity of elevated short-range ordered nanohole arrays in optically thin plasmonic Au films,” Opt. Express 21(12), 14763–14770 (2013). [CrossRef] [PubMed]
  6. J. Zhu, J. J. Li, J. W. Zhao, “Improve the refractive index sensitivity of coaxial-cable type gold nanostructure: the effect of dielectric polarization from the separate layer,” J. Nanopart. Res. 15(6), 1721 (2013). [CrossRef]
  7. S. Raza, G. Toscano, A. P. Jauho, N. A. Mortensen, M. Wubs, “Refractive-Index Sensing with Ultrathin Plasmonic Nanotubes,” Plasmonics 8(2), 193–199 (2013). [CrossRef]
  8. A. Sun, Z. S. Wu, “A Hybrid LPG/CFBG for Highly Sensitive Refractive Index Measurements,” Sensors (Basel) 12(12), 7318–7325 (2012). [CrossRef] [PubMed]
  9. Y. Shen, J. H. Zhou, T. R. Liu, Y. T. Tao, R. B. Jiang, M. X. Liu, G. Xiao, J. Zhu, Z. K. Zhou, X. Wang, C. Jin, J. Wang, “Plasmonic gold mushroom arrays with refractive index sensing figures of merit approaching the theoretical limit,” Nat. Commun. 4, 2381 (2013). [CrossRef] [PubMed]
  10. B. Gallinet, O. J. F. Martin, “Refractive index sensing with subradiant modes: A framework to reduce losses in plasmonic nanostructures,” ACS Nano 7(8), 6978–6987 (2013). [CrossRef] [PubMed]
  11. M. X. Ren, C. P. Pan, Q. Q. Li, W. Cai, X. Z. Zhang, Q. Wu, S. Fan, J. Xu, “Isotropic spiral plasmonic metamaterial for sensing large refractive index change,” Opt. Lett. 38(16), 3133–3136 (2013). [CrossRef] [PubMed]
  12. F. Hao, P. Nordlander, Y. Sonnefraud, P. van Dorpe, S. A. Maier, “Tunability of Subradiant Dipolar and Fano-Type Plasmon Resonances in Metallic Ring/Disk Cavities: Implications for Nanoscale Optical Sensing,” ACS Nano 3(3), 643–652 (2009). [CrossRef] [PubMed]
  13. Y. H. Fu, J. B. Zhang, Y. F. Yu, B. Luk’yanchuk, “Generating and Manipulating Higher Order Fano Resonances in Dual-Disk Ring Plasmonic Nanostructures,” ACS Nano 6(6), 5130–5137 (2012). [CrossRef] [PubMed]
  14. J. H. Zhou, X. P. Xu, W. B. Han, D. Mu, H. Song, Y. Meng, X. Leng, J. Yang, X. Di, Q. Chang, “Fano resonance of nanoparticles embedded in Fabry-Perot cavities,” Opt. Express 21(10), 12159–12164 (2013). [CrossRef] [PubMed]
  15. T. Cao, L. Zhang, “Enhancement of Fano resonance in metal/dielectric/metal metamaterials at optical regime,” Opt. Express 21(16), 19228–19239 (2013). [CrossRef] [PubMed]
  16. X. B. Kang, H. D. Li, J. Ding, Z. G. Wang, “Fano resonance and step-like transmission via guide-mode resonance structure,” Opt. Lett. 38(5), 715–717 (2013). [CrossRef] [PubMed]
  17. K. Lodewijks, J. Ryken, W. V. Roy, G. Borghs, L. Lagae, P. V. Dorpe, “Tuning the Fano Resonance Between Localized and Propagating Surface Plasmon Resonances for Refractive Index Sensing Applications,” Plasmonics 8(3), 1379–1385 (2013). [CrossRef]
  18. T. S. Wu, L. Wang, Z. Wang, “A photonic crystal fiber temperature sensor based on Signac interferometer structure,” Chin. J. Lasers 39(11), 1114002 (2012). [CrossRef]
  19. L. Qi, C. L. Zhao, J. Y. Yuan, M. P. Ye, J. Wang, Z. Zhang, S. Jin, “Highly reflective long period fiber grating sensor and its application in refractive index sensing,” Sens. Actuators B Chem. 193, 185–189 (2014). [CrossRef]
  20. M. M. Luo, Y. G. Liu, Z. Wang, T. T. Han, Z. Wu, J. Guo, W. Huang, “Twin-resonance-coupling and high sensitivity sensing characteristics of a selectively fluid-filled microstructured optical fiber,” Opt. Express 21(25), 30911–30917 (2013). [CrossRef] [PubMed]
  21. C. Nicolaou, W. T. Lau, R. Gad, H. Akhavan, R. Schilling, O. Levi, “Enhanced detection limit by dark mode perturbation in 2D photonic crystal slab refractive index sensors,” Opt. Express 21(25), 31698–31712 (2013). [CrossRef] [PubMed]
  22. S. C. Warren-Smith, T. M. Monro, “Exposed core microstructured optical fiber Bragg gratings: refractive index sensing,” Opt. Express 22(2), 1480–1489 (2014). [CrossRef] [PubMed]
  23. D. K. C. Wu, B. T. Kuhlmey, B. J. Eggleton, “Ultrasensitive photonic crystal fiber refractive index sensor,” Opt. Lett. 34(3), 322–324 (2009). [CrossRef] [PubMed]
  24. J. J. Chen, C. W. Sun, Q. H. Gong, “Fano resonances in a single defect nanocavity coupled with a plasmonic waveguide,” Opt. Lett. 39(1), 52–55 (2014). [CrossRef] [PubMed]
  25. B. W. You, J. Y. Lu, T. A. Liu, J. L. Peng, “Hybrid terahertz plasmonic waveguide for sensing applications,” Opt. Express 21(18), 21087–21096 (2013). [CrossRef] [PubMed]
  26. E. A. Velichko, A. I. Nosich, “Refractive-index sensitivities of hybrid surface-plasmon resonances for a core-shell circular silver nanotube sensor,” Opt. Lett. 38(23), 4978–4981 (2013). [CrossRef] [PubMed]
  27. J. H. Zhu, X. G. Huang, J. Tao, X. P. Jin, X. Mei, “Nanometeric plasmonic refractive index senor,” Opt. Commun. 285(13-14), 3242–3245 (2012). [CrossRef]
  28. X. S. Lin, X. G. Huang, “Tooth-shaped plasmonic waveguide filters with nanometeric sizes,” Opt. Lett. 33(23), 2874–2876 (2008). [CrossRef] [PubMed]
  29. T. B. Wang, X. W. Wen, C. P. Yin, H. Z. Wang, “The transmission characteristics of surface plasmon polaritons in ring resonator,” Opt. Express 17(26), 24096–24101 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited