OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7686–7693

Flame-enhanced laser-induced breakdown spectroscopy

L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7686-7693 (2014)
http://dx.doi.org/10.1364/OE.22.007686


View Full Text Article

Enhanced HTML    Acrobat PDF (1645 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Flame-enhanced laser-induced breakdown spectroscopy (LIBS) was investigated to improve the sensitivity of LIBS. It was realized by generating laser-induced plasmas in the blue outer envelope of a neutral oxy-acetylene flame. Fast imaging and temporally resolved spectroscopy of the plasmas were carried out. Enhanced intensity of up to 4 times and narrowed full width at half maximum (FWHM) down to 60% for emission lines were observed. Electron temperatures and densities were calculated to investigate the flame effects on plasma evolution. These calculated electron temperatures and densities showed that high-temperature and low-density plasmas were achieved before 4 µs in the flame environment, which has the potential to improve LIBS sensitivity and spectral resolution.

© 2014 Optical Society of America

OCIS Codes
(350.5400) Other areas of optics : Plasmas
(300.6365) Spectroscopy : Spectroscopy, laser induced breakdown

ToC Category:
Spectroscopy

History
Original Manuscript: January 8, 2014
Revised Manuscript: March 16, 2014
Manuscript Accepted: March 18, 2014
Published: March 26, 2014

Citation
L. Liu, S. Li, X. N. He, X. Huang, C. F. Zhang, L. S. Fan, M. X. Wang, Y. S. Zhou, K. Chen, L. Jiang, J. F. Silvain, and Y. F. Lu, "Flame-enhanced laser-induced breakdown spectroscopy," Opt. Express 22, 7686-7693 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7686


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. W. M. Andrzej, P. Vincenzo, and S. Israel, Laser-Induced Breakdown Spectroscopy: Fundamentals and Applications (Cambridge University, 2006).
  2. J. E. Carranza, B. T. Fisher, G. D. Yoder, D. W. Hahn, “On-line analysis of ambient air aerosols using laser-induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 56(6), 851–864 (2001). [CrossRef]
  3. A. Kumar, F. Y. Yueh, J. P. Singh, S. Burgess, “Characterization of malignant tissue cells by laser-induced breakdown spectroscopy,” Appl. Opt. 43(28), 5399–5403 (2004). [CrossRef] [PubMed]
  4. M. D. Mowery, R. Sing, J. Kirsch, A. Razaghi, S. Béchard, R. A. Reed, “Rapid at-line analysis of coating thickness and uniformity on tablets using laser induced breakdown spectroscopy,” J. Pharm. Biomed. Anal. 28(5), 935–943 (2002). [CrossRef] [PubMed]
  5. K. Y. Yamamoto, D. A. Cremers, M. J. Ferris, L. E. Foster, “Detection of metals in the environment using a portable laser-induced breakdown spectroscopy instrument,” Appl. Spectrosc. 50(2), 222–233 (1996). [CrossRef]
  6. J. L. Gottfried, F. C. De Lucia, C. A. Munson, A. W. Miziolek, “Laser-induced breakdown spectroscopy for detection of explosives residues: a review of recent advances, challenges, and future prospects,” Anal. Bioanal. Chem. 395(2), 283–300 (2009). [CrossRef] [PubMed]
  7. S. Tzortzakis, D. Anglos, D. Gray, “Ultraviolet laser filaments for remote laser-induced breakdown spectroscopy (LIBS) analysis: applications in cultural heritage monitoring,” Opt. Lett. 31(8), 1139–1141 (2006). [CrossRef] [PubMed]
  8. V. I. Babushok, F. C. De Lucia, J. L. Gottfried, C. A. Munson, A. W. Miziolek, “Double pulse laser ablation and plasma: Laser induced breakdown spectroscopy signal enhancement,” Spectrochim. Acta, B At. Spectrosc. 61(9), 999–1014 (2006). [CrossRef]
  9. D. K. Killinger, S. D. Allen, R. D. Waterbury, C. Stefano, “Enhancement of Nd:YAG LIBS emission of a remote target using a simultaneous CO2 laser pulse,” Opt. Lett. 15(20), 12905–12915 (2007).
  10. J. Scaffidi, J. Pender, W. Pearman, S. R. Goode, B. W. Colston, J. C. Carter, S. M. Angel, “Dual-pulse laser-induced breakdown spectroscopy with combinations of femtosecond and nanosecond laser pulses,” Appl. Opt. 42(30), 6099–6106 (2003). [CrossRef] [PubMed]
  11. X. K. Shen, J. Sun, H. Ling, Y. F. Lu, “Spatial confinement effects in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 91(8), 081501 (2007). [CrossRef]
  12. A. M. Popov, F. Colao, R. Fantoni, “Spatial confinement of laser-induced plasma to enhance LIBS sensitivity for trace elements determination in soils,” J. Anal. At. Spectrom. 25(6), 837–848 (2010). [CrossRef]
  13. L. B. Guo, C. M. Li, W. Hu, Y. S. Zhou, B. Y. Zhang, Z. X. Cai, X. Y. Zeng, Y. F. Lu, “Plasma confinement by hemispherical cavity in laser-induced breakdown spectroscopy,” Appl. Phys. Lett. 98(13), 131501 (2011). [CrossRef]
  14. X. K. Shen, Y. F. Lu, T. Gebre, H. Ling, Y. X. Han, “Optical emission in magnetically confined laser-induced breakdown spectroscopy,” J. Appl. Phys. 100(5), 053303 (2006). [CrossRef]
  15. Y. A. Liu, M. Baudelet, M. Richardson, “Elemental analysis by microwave-assisted laser-induced breakdown spectroscopy: Evaluation on ceramics,” J. Anal. At. Spectrom. 25(8), 1316–1323 (2010). [CrossRef]
  16. W. D. Zhou, K. X. Li, Q. M. Shen, Q. L. Chen, J. Long, “Optical emission enhancement using laser ablation combined with fast pulse discharge,” Opt. Express 18(3), 2573–2578 (2010). [CrossRef] [PubMed]
  17. X. N. He, W. Hu, C. M. Li, L. B. Guo, Y. F. Lu, “Generation of high-temperature and low-density plasmas for improved spectral resolutions in laser-induced breakdown spectroscopy,” Opt. Express 19(11), 10997–11006 (2011). [CrossRef] [PubMed]
  18. D. N. Stratis, K. L. Eland, S. M. Angel, “Effect of pulse delay time on a pre-ablation dual-pulse LIBS plasma,” Appl. Spectrosc. 55(10), 1297–1303 (2001). [CrossRef]
  19. R. Sanginés, H. Sobral, E. Alvarez-Zauco, “The effect of sample temperature on the emission line intensification mechanism in orthogonal double-pulse laser induced breakdown spectroscopy,” Spectrochim. Acta, B At. Spectrosc. 68, 40–45 (2012). [CrossRef]
  20. S. Eschlböck-Fuchs, M. J. Haslinger, A. Hinterreiter, P. Kolmhofer, N. Huber, R. Rössler, J. Heitz, J. D. Pedarnig, “Influence of sample temperature on the expansion dynamics and the optical emission of laser-induced plasma,” Spectrochim. Acta, B At. Spectrosc. 87, 36–42 (2013). [CrossRef]
  21. S. H. Tavassoli, A. Gragossian, “Effect of sample temperature on laser-induced breakdown spectroscopy,” Opt. Laser Technol. 41(4), 481–485 (2009). [CrossRef]
  22. M. A. Hafez, M. A. Khedr, F. F. Elaksher, Y. E. Gamal, “Characteristics of Cu plasma produced by a laser interaction with a solid tartget,” Plasma Sources Sci. Technol. 12(2), 185–198 (2003). [CrossRef]
  23. D. H. Lee, S. C. Han, T. H. Kim, J. I. Yun, “Highly sensitive analysis of boron and lithium in aqueous solution using dual-pulse laser-induced breakdown spectroscopy,” Anal. Chem. 83(24), 9456–9461 (2011). [CrossRef] [PubMed]
  24. H. R. Griem, Spectral Line Broadening by Plasma (Academic, 1974).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited