OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7733–7743

Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow

Gyorgy A. Porkolab, Paveen Apiratikul, Bohan Wang, S. H. Guo, and Christopher J. K. Richardson  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7733-7743 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (5808 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report low-loss deep-etch AlGaAs optical waveguides fabricated with nitrogen plasma-assisted photoresist reflow. The simultaneous application of a nitrogen plasma and heat is used to reduce the line edge roughness of patterned photoresist and limit the lateral spread of the photoresist patterns of submicron-scale waveguides. Comparison of the edge roughness of the etched sidewalls between the as-developed and smoothed photoresist etch samples show a reduction of the RMS roughness from 3.39±0.17 nm to 1.39±0.03 nm. The reduction in propagation loss is verified by measured waveguide loss as a function of waveguide widths. A 0.65-μm wide waveguide with a modal area of 0.4 μm2 is fabricated with a propagation loss as low as 1.20±0.13 dB/cm for the transverse-electric mode.

© 2014 Optical Society of America

OCIS Codes
(230.7370) Optical devices : Waveguides
(290.5880) Scattering : Scattering, rough surfaces

ToC Category:

Original Manuscript: February 3, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 16, 2014
Published: March 26, 2014

Gyorgy A. Porkolab, Paveen Apiratikul, Bohan Wang, S. H. Guo, and Christopher J. K. Richardson, "Low propagation loss AlGaAs waveguides fabricated with plasma-assisted photoresist reflow," Opt. Express 22, 7733-7743 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. S. Aitchison, D. C. Hutchings, J. U. Kang, G. I. Stegeman, A. Villeneuve, “The nonlinear optical properties of AlGaAs at the half band gap,” J. QuantumElectron. 33, 341–348 (1997).
  2. G. A. Siviloglou, S. Suntsov, R. El-Ganainy, R. Iwanow, G. I. Stegeman, D. N. Christodoulides, “Enhanced third-order nonlinear effects in optical AlGaAs nanowires,” Opt. Express 14, 9377–9384 (2006). [CrossRef] [PubMed]
  3. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, “Compact highly-nonlinear AlGaAs waveguides for efficient wavelength conversion,” Opt. Express 19, 12440–12455 (2011). [CrossRef] [PubMed]
  4. W. Astar, P. Apiratikul, B. M. Cannon, B. M. Mahmood, J. J. Wathen, J. V. Hryniewicz, S. Kanakaraju, C. J. K. Richardson, T. E. Murphy, G. M. Carter, “Conversion of RZ-OOK to RZ-BPSK by XPM in a passive AlGaAs waveguide,” IEEE Photonics Technol. Lett. 23, 1397–1399 (2011). [CrossRef]
  5. J. Meier, W. S. Mohammed, A. Jugessur, L. Qian, M. Mojahedi, J. S. Aitchison, “Group velocity inversion in AlGaAs nanowires,” Opt. Express 15, 12755–12762 (2007). [CrossRef] [PubMed]
  6. Y. Lou, D. C. Hall, “Low-loss nonselectively oxidized Alx Ga1−x As heterostructure waveguides,” Appl. Phys. Lett. 93, 261111 (2008). [CrossRef]
  7. J. Shin, Y.-C. Chang, N. Dagli, “Propagation loss study of very compact GaAs/AlGaAs substrate removed waveguides,” Opt. Express 17, 3390–3395 (2009). [CrossRef] [PubMed]
  8. H. E. G. Arnot, H. P. Zappe, J. E. Epler, B. Graf, R. Widmer, H. W. Lehmann, “Extremely smooth sidewalls for GaAs/AlGaAs ridge waveguides,” Electron. Lett. 29, 1131–1133 (1993). [CrossRef]
  9. M. Borselli, T. J. Johnson, O. Paintera, “Beyond the rayleigh scattering limit in high-Q silicon microdisks: theory and experiment,” Opt. Express 13, 1515–1530 (2005). [CrossRef] [PubMed]
  10. T. Ling, S.-L. Chen, L. J. Guo, “Fabrication and characterization of high Q polymer micro-ring resonator and its application as a sensitive ultrasonic detector,” Opt. Express 19, 861–869 (2011). [CrossRef] [PubMed]
  11. Z. D. Popovic, R. A. Sprague, G. A. N. Connell, “Technique for monolithic fabrication of microlens arrays,” Appl. Opt. 27, 1281–1288 (1988). [CrossRef] [PubMed]
  12. A. B. Fallahkhair, K. S. Li, T. E. Murphy, “Vector finite difference modesolver for anisotropic dielectric waveguides,” J. Lightwave Technol. 26, 1423–1431 (2008). [CrossRef]
  13. E. Pargon, M. Martin, K. Menguelti, L. Azarnouche, J. Foucher, O. Joubert, “Plasma impact on 193 nm photoresist linewidth roughness: Role of plasma vacuum ultraviolet light,” Appl. Phys. Lett. 94, 103111 (2009). [CrossRef]
  14. G. S. Oehrlein, R. J. Phaneuf, D. B. Graves, “Plasma-polymer interactions: A review of progress in understanding polymer resist mask durability during plasma etching for nanoscale fabrication,” J. Vac. Sci. Technol. B 29, 010801 (2011). [CrossRef]
  15. T. Barwicz, H. A. Haus, “Three-dimensional analysis of scattering losses due to sidewall roughness in microphotonic waveguides,” J. Lightwave Technol. 23, 2719–2732 (2005). [CrossRef]
  16. F. Ladouceur, J. D. Love, T. J. Senden, “Effect of side wall roughness in buried channel waveguides,” IEE Proc. Optoelectron. 141, 242–248 (1994). [CrossRef]
  17. J. A. Ogilvy, J. R. Foster, “Rough surfaces: gaussian or exponential statistics?” J. Phys. D Appl. Phys 22, 1243–1251 (1989). [CrossRef]
  18. E. Kapon, R. Bhat, “Lowloss singlemode GaAs/AlGaAs optical waveguides grown by organometallic vapor phase epitaxy,” Appl. Phys. Lett. 50, 1627–1630 (1987). [CrossRef]
  19. C. Lacava, V. Pusino, P. Minzioni, M. Sorel, I. Cristiani, “Nonlinear properties of AlGaAs waveguides in continuous wave operation regime,” Opt. Express 22, 5291–5297 (2014). [CrossRef]
  20. C. M. Herzinger, C. C. Lu, T. A. Detemple, “The semiconductor waveguide facet reflectivity problem,” J. QuantumElectron. 29, 2273–2281 (1993).
  21. K. Dolgaleva, W. C. Ng, L. Qian, J. S. Aitchison, M. C. Camasta, M. Sorel, “Broadband self-phase modulation, cross-phase modulation, and four-wave mixing in 9-mm-long AlGaAs waveguides,” Opt. Lett. 35, 4093–4095 (2010). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited