OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7744–7755

Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal

R. Hussain, D. Keene, N. Noginova, and M. Durach  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7744-7755 (2014)
http://dx.doi.org/10.1364/OE.22.007744


View Full Text Article

Enhanced HTML    Acrobat PDF (1731 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Strong modification of spontaneous emission of Eu3+ ions placed in close vicinity to thin and thick gold and silver films was clearly demonstrated in a microscope setup separately for electric and magnetic dipole transitions. We have shown that the magnetic transition was very sensitive to the thickness of the gold substrate and behaved distinctly different from the electric transition. The observations were described theoretically based on the dyadic Green’s function approach for layered media and explained through modified image models for the near and far-field emissions. We established that there exists a “near-field event horizon”, which demarcates the distance from the metal at which the dipole emission is taken up exclusively in the near field.

© 2014 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(240.0310) Optics at surfaces : Thin films
(240.6680) Optics at surfaces : Surface plasmons
(260.2510) Physical optics : Fluorescence
(260.3800) Physical optics : Luminescence
(260.3910) Physical optics : Metal optics

ToC Category:
Surface Plasmons

History
Original Manuscript: February 18, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 17, 2014
Published: March 26, 2014

Citation
R. Hussain, D. Keene, N. Noginova, and M. Durach, "Spontaneous emission of electric and magnetic dipoles in the vicinity of thin and thick metal," Opt. Express 22, 7744-7755 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7744


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. M. Purcell, “Spontaneous emission probabilities at radio frequencies,” Phys. Rev. 69, 681 (1946).
  2. K. H. Drexhage, “Interaction of light with monomolecular dye layers,” Progress in Optics XII, 162–231 (1974).
  3. R. R. Chance, A. Prock, R. Silbey, “Lifetime of an emitting molecule near a partially reflecting surface,” J. Chem. Phys. 60(7), 2744–2748 (1974). [CrossRef]
  4. W. Lukosz, R. E. Kunz, “Light emission by magnetic and electric dipoles close to a plane interface. I. Total radiated power,” JOSA 67(12), 1607–1615 (1977). [CrossRef]
  5. W. Lukosz, “Light emission by magnetic and electric dipoles close to a plane dielectric interface. III. Radiation patterns of dipoles with arbitrary orientation,” JOSA 69(11), 1495–1503 (1979). [CrossRef]
  6. R. R. Chance, A. H. Miller, A. Prock, R. Silbey, “Fluorescence and energy transfer near interfaces: The complete and quantitative description of the Eu+3/mirror systems,” J. Chem. Phys. 63(4), 1589–1595 (1975). [CrossRef]
  7. L. Novotny and B. Hetcht, Principles of Nano-optics, (Cambridge University, 2007).
  8. Z. Xi, Y. Lu, P. Yao, W. Yu, P. Wang, H. Ming, “Controllable directive radiation of a circularly polarized dipole above planar metal surface,” Opt. Express 21(25), 30327–30335 (2013). [CrossRef] [PubMed]
  9. P. T. Worthing, R. M. Amos, W. L. Barnes, “Modification of the spontaneous emission rate of Eu3+ ions embedded within a dielectric layer above a silver mirror,” Phys. Rev. A 59(1), 865–872 (1999). [CrossRef]
  10. N. Noginova, R. Hussain, M. A. Noginov, J. Vella, A. Urbas, “Modification of electric and magnetic dipole emission in anisotropic plasmonic systems,” Opt. Express 21(20), 23087–23096 (2013). [CrossRef] [PubMed]
  11. T. H. Taminiau, S. Karaveli, N. F. van Hulst, R. Zia, “Quantifying the magnetic nature of light emission,” Nat Commun 3, 979 (2012). [CrossRef] [PubMed]
  12. S. Karaveli, R. Zia, “Spectral tuning by selective enhancement of electric and magnetic dipole emission,” Phys. Rev. Lett. 106(19), 193004 (2011). [CrossRef] [PubMed]
  13. S. Karaveli, R. Zia, “Strong enhancement of magnetic dipole emission in a multilevel electronic system,” Opt. Lett. 35(20), 3318–3320 (2010). [CrossRef] [PubMed]
  14. S. Karaveli, A. J. Weinstein, R. Zia, “Direct modulation of lanthanide emission at sub-lifetime scales,” Nano Lett. 13(5), 2264–2269 (2013). [CrossRef] [PubMed]
  15. X. Ni, G. V. Naik, A. V. Kildishev, Y. Barnakov, A. Boltasseva, V. M. Shalaev, “Effect of metallic and hyperbolic metamaterial surfaces on electric and magnetic dipole emission transitions,” Appl. Phys. B 103(3), 553–558 (2011). [CrossRef]
  16. N. Noginova, G. Zhu, M. Mavy, M. A. Noginov, “Magnetic dipole based systems for probing optical magnetism,” J. Appl. Phys. 103(7), 07E901 (2008). [CrossRef]
  17. N. Noginova, Yu. Barnakov, H. Li, M. A. Noginov, “Effect of metallic surface on electric dipole and magnetic dipole emission transitions in Eu3+ doped polymeric film,” Opt. Express 17(13), 10767–10772 (2009). [CrossRef] [PubMed]
  18. R. Hussain, C. Whitefield, C. Carroll, J. Vella, A. Urbas, and N. Noginova, “Emission of electric and magnetic dipoles in plasmonic systems,” in CLEO Technical Digest, paper QM4H.7 (2012).
  19. S. N. Sheikholeslami, A. García-Etxarri, J. A. Dionne, “Controlling the Interplay of Electric and Magnetic Modes via Fano-Like Plasmon Resonances,” Nano Lett. 11(9), 3927–3934 (2011). [CrossRef] [PubMed]
  20. K. Wang, L. Gao, C. Huang, “Optical properties of the highly ordered Langmuir-Blodgett film of a strongly luminescent Eu(III) complex,” J. Photochem. Photobiol. Chem. 156(1-3), 39–43 (2003). [CrossRef]
  21. J. G. Reifenberger, G. E. Snyder, G. Baym, P. R. Selvin, “Emission polarization of europium and terbium chelates,” J. Phys. Chem. B 107(46), 12862–12873 (2003). [CrossRef]
  22. F. Monroy, F. Ortega, R. G. Rubio, “Dilatational rheology of insoluble polymer monolayers: Poly(vinylacetate),” Phys. Rev. E Stat. Phys. Plasmas Fluids Relat. Interdiscip. Topics 58(6), 7629–7641 (1998). [CrossRef]
  23. J. E. Sipe, “The dipole antenna problem in surface physics: a new approach,” Surf. Sci. 105(2-3), 489–504 (1981). [CrossRef]
  24. G. W. Ford, W. H. Weber, “Electromagnetic interactions of molecules with metal surfaces,” Phys. Rep. 113(4), 195–287 (1984). [CrossRef]
  25. M. Durach, A. Rusina, V. I. Klimov, M. I. Stockman, “Nanoplasmonic renormalization and enhancement of Coulomb interactions,” New J. Phys. 10(10), 105011 (2008). [CrossRef]
  26. J. B. Pendry, “Negative refraction makes a perfect lens,” Phys. Rev. Lett. 85(18), 3966–3969 (2000). [CrossRef] [PubMed]
  27. R. M. A. Azzam, “Transformation of Fresnel’s interface reflection and transmission coefficients between normal and oblique incidence,” JOSA 69(4), 590–596 (1979). [CrossRef]
  28. M. Born and E. Wolf, Principles of Optics (Cambridge University Press, 1999).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited