OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7773–7782

Toward parametric amplification in plasmonic systems: Second harmonic generation enhanced by surface plasmon polaritons

M. Mayy, G. Zhu, A. D. Webb, H. Ferguson, T. Norris, V. A. Podolskiy, and M. A. Noginov  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7773-7782 (2014)
http://dx.doi.org/10.1364/OE.22.007773


View Full Text Article

Enhanced HTML    Acrobat PDF (1229 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Having in mind parametric amplification of surface plasmon polaritons (SPPs) as the final goal, we took the first step and studied in the Kretschmann geometry a simpler nonlinear optical process – second harmonic generation (SHG) enhanced by SPPs propagating at the interface between gold film and 2-methyl-4-nitroaniline (MNA). The experimentally demonstrated SHG efficiency was nearly 106 times larger than the one reported previously in the SPP system with different nonlinear optical material. The experimentally measured nonlinear conversion efficiency is estimated to be sufficient for parametric amplification of surface plasmon polaritons at ultra-short laser pumping.

© 2014 Optical Society of America

OCIS Codes
(190.4400) Nonlinear optics : Nonlinear optics, materials
(240.6680) Optics at surfaces : Surface plasmons
(190.4975) Nonlinear optics : Parametric processes
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: August 27, 2013
Revised Manuscript: October 4, 2013
Manuscript Accepted: October 15, 2013
Published: March 27, 2014

Citation
M. Mayy, G. Zhu, A. D. Webb, H. Ferguson, T. Norris, V. A. Podolskiy, and M. A. Noginov, "Toward parametric amplification in plasmonic systems: Second harmonic generation enhanced by surface plasmon polaritons," Opt. Express 22, 7773-7782 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7773


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. K. Kneipp, Y. Wang, H. Kneipp, L. T. Perelman, I. Itzkan, R. R. Dasari, M. S. Feld, “Single molecule detection using surface-enhanced raman scattering (sers),” Phys. Rev. Lett. 78(9), 1667–1670 (1997). [CrossRef]
  2. M. Moskovits, “Surface–enhanced spectroscopy,” Rev. Mod. Phys. 57(3), 783–826 (1985). [CrossRef]
  3. M. L. Brongersma, V. M. Shalaev, “The case for plasmonics,” Science 328(5977), 440–441 (2010). [CrossRef] [PubMed]
  4. Z. Gryczynski, E. G. Matveeva, N. Calander, J. Zhang, J. R. Lakowicz, and I. Gryczynski, “Surface plasmon coupled emission,” in Surface Plasmon Nanophotonics, M. L. Brongersma and P. G. Kik, eds. (Springer, 2007).
  5. H. Raether, “Surface plasmons on smooth and rough surfaces and on gratings,” (Springer-Verlag, 1988)
  6. A. N. Sudarkin, P. A. Demkovich, “Excitation of surface electromagnetic waves on the boundary of a metal with an amplifying medium,” Sov. Phys. Tech. Phys. 34, 764–766 (1989).
  7. M. A. Noginov and V. A. Podolskiy, eds., Tutorials in metamaterials, (CRC press, Taylor & Francis, 2011).
  8. N. M. Lawandy, “Localized surface plasmon singularities in amplifying media,” Appl. Phys. Lett. 85(21), 5040–5042 (2004). [CrossRef]
  9. M. Nezhad, K. Tetz, Y. Fainman, “Gain assisted propagation of surface plasmon polaritons on planar metallic waveguides,” Opt. Express 12(17), 4072–4079 (2004). [CrossRef] [PubMed]
  10. I. Avrutsky, “Surface plasmons at nanoscale relief gratings between a metal and a dielectric medium with optical gain,” Phys. Rev. B 70(15), 155416 (2004). [CrossRef]
  11. D. J. Bergman, M. I. Stockman, “Surface plasmon amplification by stimulated emission of radiation: quantum generation of coherent surface plasmons in nanosystems,” Phys. Rev. Lett. 90(2), 027402 (2003). [CrossRef] [PubMed]
  12. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. E. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “Enhancement of surface plasmons in an Ag aggregate by optical gain in a dielectric medium,” Opt. Lett. 31(20), 3022–3024 (2006). [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, M. Bahoura, J. Adegoke, C. Small, B. A. Ritzo, V. P. Drachev, V. M. Shalaev, “The effect of gain and absorption on surface plasmons in metal nanoparticles,” Appl. Phys. B 86(3), 455–460 (2007). [CrossRef]
  14. M. A. Noginov, V. A. Podolskiy, G. Zhu, M. Mayy, M. Bahoura, J. A. Adegoke, B. A. Ritzo, K. Reynolds, “Compensation of loss in propagating surface plasmon polariton by gain in adjacent dielectric medium,” Opt. Express 16(2), 1385–1392 (2008). [CrossRef] [PubMed]
  15. M. A. Noginov, G. Zhu, M. Mayy, B. A. Ritzo, N. Noginova, V. A. Podolskiy, “Stimulated emission of surface plasmon polaritons,” Phys. Rev. Lett. 101(22), 226806 (2008). [CrossRef] [PubMed]
  16. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, V. M. Shalaev, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460(7259), 1110–1112 (2009). [CrossRef] [PubMed]
  17. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466(7307), 735–738 (2010). [CrossRef] [PubMed]
  18. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  19. A. K. Popov, V. M. Shalaev, “Negative-index metamaterials: second-harmonic generation, Manley–Rowe relations and parametric amplification,” Appl. Phys. B 84(1-2), 131–137 (2006). [CrossRef]
  20. R. Paschotta, Encyclopedia of laser physics and technology, (Wiley-VCH, 2008).
  21. W. Koechner and M. Bass, Solid–State lasers engineering, (Springer–Verlag, 2003).
  22. M. Ambati, S. H. Nam, E. Ulin-Avila, D. A. Genov, G. Bartal, X. Zhang, “Observation of Stimulated Emission of Surface Plasmon Polaritons,” Nano Lett. 8(11), 3998–4001 (2008). [CrossRef] [PubMed]
  23. G. F. Lipscomb, “An exceptionally large linear electro-optic effect in the organic solid MNA,” J. Chem. Phys. 75(3), 1509 (1981). [CrossRef]
  24. B. F. Levine, C. G. Bethea, C. D. Thurmond, R. T. Lynch, J. L. Bernstein, “An organic crystal with an exceptionally large optical second-harmonic coefficient: 2-methyl-4-nitroaniline,” J. Appl. Phys. 50(4), 2523–2527 (1979). [CrossRef]
  25. J. Jerphagnon, S. K. Kurtz, “Maker fringes: A detailed comparison of theory and experiment for isotropic and uniaxial crystals,” J. Appl. Phys. 41(4), 1667–1681 (1970). [CrossRef]
  26. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  27. S. R. Marder, J. E. Sohn, and G. D. Stucky, eds., “Materials for nonlinear optics: Chemical perspectives,” ACS symposium series no. 455. (American Chemical Society,1991).
  28. H. Itoh, K. Hotta, H. Takara, K. Sasaki, “Frequency doubling of a Nd:YAG laser by a MNA single crystal thin film on a slab-type optical glass waveguide,” Appl. Opt. 25(9), 1491–1494 (1986). [CrossRef] [PubMed]
  29. G. Zhang, K. Sasaki, “Measuring anisotropic refractive indices and film thicknesses of thin organic crystals using the prism coupling method,” Appl. Opt. 27(7), 1358–1362 (1988). [CrossRef] [PubMed]
  30. M. W. Ribarsky, “Titanium Oxide” in Handbook of Optical Constants of Solids, edited by E. D. Palik and G. Ghosh, volume 2. (Academic Press, 1998)
  31. I. R. Girling, N. A. Cade, P. V. Kolinsky, G. H. Cross, I. R. Peterson, “Surface plasmon enhanced SHG from a hemicyanine monolayer,” J. Phys. D 19(11), 2065–2075 (1986). [CrossRef]
  32. N. Feth, S. Linden, M. W. Klein, M. Decker, F. B. P. Niesler, Y. Zeng, W. Hoyer, J. Liu, S. W. Koch, J. V. Moloney, M. Wegener, “Second-harmonic generation from complementary split-ring resonators,” Opt. Lett. 33(17), 1975–1977 (2008). [CrossRef] [PubMed]
  33. P. A. Franken, A. E. Hill, C. W. Peters, G. Weinreich, “Generation of optical harmonics,” Phys. Rev. Lett. 7(4), 118–119 (1961). [CrossRef]
  34. D. Cho, W. Wu, F. Wang, X. Zhang, Y.-R. Shen, “Nonlinear Optics in Metamaterials,” Conference Paper, Laser Science, San Jose, CA USA, October 11–15, 2009.
  35. G. A. Wurtz, R. Pollard, W. Hendren, G. P. Wiederrecht, D. J. Gosztola, V. A. Podolskiy, A. V. Zayats, “Designed ultrafast optical nonlinearity in a plasmonic nanorod metamaterial enhanced by nonlocality,” Nat. Nanotechnol. 6(2), 107–111 (2011). [CrossRef] [PubMed]
  36. S. Palomba, H. Harutyunyan, J. Renger, R. Quidant, N. F. van Hulst, L. Novotny, “Nonlinear plasmonics at planar metal surfaces,” Philos Trans A Math Phys Eng Sci 369(1950), 3497–3509 (2011). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited