OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7790–7798

Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space

Erdenetsetseg Luvsandamdin, Christian Kürbis, Max Schiemangk, Alexander Sahm, Andreas Wicht, Achim Peters, Götz Erbert, and Günther Tränkle  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7790-7798 (2014)
http://dx.doi.org/10.1364/OE.22.007790


View Full Text Article

Enhanced HTML    Acrobat PDF (2386 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a micro-integrated, extended cavity diode laser module for space-based experiments on potassium Bose-Einstein condensates and atom interferometry. The module emits at the wavelength of the potassium D2-line at 766.7 nm and provides 27.5 GHz of continuous tunability. It features sub-100 kHz short term (100 μs) emission linewidth. To qualify the extended cavity diode laser module for quantum optics experiments in space, vibration tests (8.1 gRMS and 21.4 gRMS) and mechanical shock tests (1500 g) were carried out. No degradation of the electro-optical performance was observed.

© 2014 Optical Society of America

OCIS Codes
(050.7330) Diffraction and gratings : Volume gratings
(130.3120) Integrated optics : Integrated optics devices
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(290.3700) Scattering : Linewidth

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: January 24, 2014
Revised Manuscript: March 18, 2014
Manuscript Accepted: March 18, 2014
Published: March 27, 2014

Citation
Erdenetsetseg Luvsandamdin, Christian Kürbis, Max Schiemangk, Alexander Sahm, Andreas Wicht, Achim Peters, Götz Erbert, and Günther Tränkle, "Micro-integrated extended cavity diode lasers for precision potassium spectroscopy in space," Opt. Express 22, 7790-7798 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7790


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Gill, “When should we change the definition of the second?,” Philos. Trans. R. Soc. London Ser. A 369, 4109–4130 (2011). [CrossRef]
  2. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319, 1808–1812 (2008). [CrossRef] [PubMed]
  3. A. D. Ludlow, T. Zelevinsky, G. K. Campbell, S. Blatt, M. M. Boyd, M. H. G. de Miranda, M. J. Martin, J. W. Thomsen, S. M. Foreman, J. Ye, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, Y. Le Coq, Z. W. Barber, N. Poli, N. D. Lemke, K. M. Beck, C. W. Oates, “Sr lattice clock at 1×10−16 factional uncertainty by remote optical evaluation with a Ca clock,” Science 319, 1805–1808 (2008). [CrossRef] [PubMed]
  4. N. Yu, J. M. Kohel, J. R. Kellogg, L. Maleki, “Development of an atom-interferometer gravity gradiometer for gravity measurement from space,” Appl. Phys. B 84, 647–652 (2006). [CrossRef]
  5. M. A. Hohensee, H. Müller, “Precision tests of general relativity with matter waves,” J. Mod. Opt. 58, 2021–2027 (2011). [CrossRef]
  6. V. Ménoret, R. Geiger, G. Stern, N. Zahzam, B. Battelier, A. Bresson, A. Landragin, P. Bouyer, “Dual-wavelength laser source for onboard atom interferometry,” Opt. Lett. 36, 4128–4130 (2011). [CrossRef] [PubMed]
  7. G. Stern, B. Battelier, R. Geiger, G. Varoquaux, A. Villing, F. Moron, O. Carraz, N. Zahzam, Y. Bidel, W. Chaibi, F. Pereira Dos Santos, A. Bresson, A. Landragin, P. Bouyer, “Light-pulse atom interferometry in microgravity,” Eur. Phys. J. D 53, 353–357 (2009). [CrossRef]
  8. F. Sorrentino, K. Bongs, P. Bouyer, L. Cacciapuoti, M. de Angelis, H. Dittus, W. Ertmer, A. Giorgini, J. Hartwig, M. Hauth, S. Herrmann, M. Inguscio, E. Kajari, T. Könemann, C. Lämmerzahl, A. Landragin, G. Modugno, F. Pereira dos Santos, A. Peters, M. Prevedelli, E. M. Rasel, W. P. Schleich, M. Schmidt, A. Senger, K. Sengstock, G. Stern, G. M. Tino, R. Walser, “Compact atom interferometer for future space missions,” Microgravity Sci. Technol. 22, 551–561 (2010). [CrossRef]
  9. L. Maleki, J. Prestage, “Applications of clocks and frequency standards: from the routine to tests of fundamental models,” Metrologia 42, 145–153 (2005). [CrossRef]
  10. S. G. Turyshev, U. E. Israelsson, M. Shao, N. Yu, A. Kusenko, E. L. Wright, C. W. F. Everitt, M. Kasevich, J. A. Lipa, J. C. Mester, R. D. Reasenberg, R. L. Walsworth, N. Ashby, H. Gould, H. J. Paik, “Space-based research in fundamental physics and quantum technologies,” Int. J. Mod. Phys. D 16, 1879–1925 (2007). [CrossRef]
  11. T. van Zoest, N. Gaaloul, Y. Singh, H. Ahlers, W. Herr, S. T. Seidel, W. Ertmer, E. Rasel, M. Eckart, E. Kajari, S. Arnold, G. Nandi, W. P. Schleich, R. Walser, A. Vogel, K. Sengstock, K. Bongs, W. Lewoczko-Adamczyk, M. Schiemangk, T. Schuldt, A. Peters, T. Könemann, H. Müntinga, C. Lämmerzahl, H. Dittus, T. Steinmetz, T. W. Hänsch, J. Reichel, “Bose-Einstein condensation in microgravity,” Science 328, 1540–1543 (2010). [CrossRef] [PubMed]
  12. C. J. Hawthorn, K. P. Weber, R. E. Scholten, “Littrow configuration tunable external cavity diode laser with fixed direction output beam,” Rev. Sci. Instrum. 72, 4477–4479 (2001). [CrossRef]
  13. C. E. Wieman, L. Hollberg, “Using diode lasers for atomic physics,” Rev. Sci. Instrum. 62, 1–20 (1991). [CrossRef]
  14. A. Wicht, M. Rudolf, P. Huke, R. H. Rinkleff, K. Danzmann, “Grating enhanced external cavity diode laser,” Appl. Phys. B. 78, 137–144 (2004). [CrossRef]
  15. R. A. Nyman, G. Varoquaux, B. Villier, D. Sacchet, F. Moron, Y. Le Coq, A. Aspect, P. Bouyer, “Tapered-amplified antireflection-coated laser diodes for potassium and rubidium atomic-physics experiments,” Rev. Sci. Instrum. 77, 033105 (2006). [CrossRef]
  16. E. Luvsandamdin, S. Spießberger, M. Schiemangk, A. Sahm, G. Mura, A. Wicht, A. Peters, G. Erbert, G. Tränkle, “Development of narrow linewidth, micro-integrated extended cavity diode lasers for quantum optics experiments in space,” Appl. Phys. B 111, 255–260 (2013). [CrossRef]
  17. K. Numata, J. Camp, M. A. Krainak, L. Stolpner, “Performance of planar-waveguide external cavity laser for precision measurements,” Opt. Express 18, 22781–22788 (2010). [CrossRef] [PubMed]
  18. M. Schiemangk, S. Spießberger, A. Wicht, G. Erbert, G. Trankle, A. Peters, “Accurate frequency noise measurement of free running lasers,” to be submitted for publication.
  19. S. Spießberger, M. Schiemangk, A. Wicht, H. Wenzel, G. Erbert, G. Tränkle, “DBR laser diodes emitting near 1064 nm with a narrow intrinsic linewidth of 2 kHz,” Appl. Phys. B 104, 813–818 (2011). [CrossRef]
  20. X. Baillard, A. Gauguet, S. Bize, P. Lemonde, Ph. Laurent, A. Clairon, P. Rosenbusch, “Interference-filter-stabilized external-cavity diode lasers,” Opt. Commun. 266, 609–613 (2006). [CrossRef]
  21. C. Salomon, N. Dimarcq, M. Abgrall, A. Clairon, P. Laurent, P. Lemonde, G. Santarelli, P. Uhrich, L. G. Bernier, G. Busca, A. Jornod, P. Thomann, E. Samain, P. Wolf, F. Gonzalez, P. Guillemot, S. Leon, F. Nouel, C. Sirmain, S. Feltham, “Cold atoms in space and atomic clocks: ACES,” C. R. Acad. Sci. IV Phys. Astron. 2, 1313–1330 (2001).
  22. M. Gilowski, C. Schubert, M. Zaiser, W. Herr, T. Wübbena, T. Wendrich, T. Müller, E.M. Rasel, W. Ertmer, “Narrow bandwidth interference filter-stabilized diode laser systems for the manipulation of neutral atoms,” Opt. Commun. 280, 443–447 (2007). [CrossRef]
  23. Qualification level tests within the framework of the TEXUS sounding rocket program of the German Space Agency DLR, amplitude spectrum 20 ... 2000 Hz.
  24. Stress level required for specific low-earth-orbit applications.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited