OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7821–7830

Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials

Yanxun Wang, Wenbin Dou, and Hongfu Meng  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7821-7830 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (4640 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Using the transverse Hertz vector potentials, vector analyses of linearly and circularly polarized Bessel beams of arbitrary orders are presented in this paper. Expressions for the electric and magnetic fields of vector Bessel beams in free space that are rigorous solutions to the vector Helmholtz equation are derived. Their respective time averaged energy density and Poynting vector are also obtained, in order to exhibit their non-diffracting properties. Polarization patterns and magnitude profiles with different parameters are displayed. Particular emphasis is placed on the cases where the ratio of wave number over its transverse component k/kt approximately equals to one and largely exceeds it, which corresponding to the nonparaxial and paraxial condition, respectively. These results allow us to recognize that the vector Bessel beams exhibit new and important features, compared with the scalar fields.

© 2014 Optical Society of America

OCIS Codes
(030.4070) Coherence and statistical optics : Modes
(190.4420) Nonlinear optics : Nonlinear optics, transverse effects in
(260.0260) Physical optics : Physical optics
(260.5430) Physical optics : Polarization

ToC Category:
Physical Optics

Original Manuscript: January 22, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 19, 2014
Published: March 27, 2014

Yanxun Wang, Wenbin Dou, and Hongfu Meng, "Vector analyses of linearly and circularly polarized Bessel beams using Hertz vector potentials," Opt. Express 22, 7821-7830 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Durnin, “Exact solutions for non-diffracting beams. I. The scalar theory,” J. Opt. Soc. Am. A 4(4), 651–654 (1987). [CrossRef]
  2. A. J. Cox, D. C. Dibble, “Holographic reproduction of a diffraction-free beam,” Appl. Opt. 30(11), 1330–1332 (1991). [CrossRef] [PubMed]
  3. Y. Z. Yu, W. B. Dou, “Generation of pseudo-Bessel beams at THz frequencies by use of binary axicons,” Opt. Express 17(2), 888–893 (2009). [CrossRef] [PubMed]
  4. J. Arlt, K. Dholakia, “Generation of high-order Bessel beams by use of an axicon,” Opt. Commun. 177(1-6), 297–301 (2000). [CrossRef]
  5. P. Vahimaa, V. Kettunen, M. Kuittinen, J. Turunen, A. T. Friberg, “Electromagnetic analysis of nonparaxial Bessel beams generated by diffractive axicons,” J. Opt. Soc. Am. A 14(8), 1817–1824 (1997). [CrossRef]
  6. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, S. Chávez-Cerda, “Alternative formulation for invariant optical fields: Mathieu beams,” Opt. Lett. 25(20), 1493–1495 (2000). [CrossRef] [PubMed]
  7. C. A. Dartora, M. Zamboni-Rached, K. Z. Nóbrega, E. Recami, H. E. Hernández-Figueroa, “General formulation for the analysis of scalar diffraction-free beams using angular modulation: Mathieu and Bessel beams,” Opt. Commun. 222(1-6), 75–80 (2003). [CrossRef]
  8. M. A. Bandres, J. C. Gutiérrez-Vega, S. Chávez-Cerda, “Parabolic nondiffracting optical wave fields,” Opt. Lett. 29(1), 44–46 (2004). [CrossRef] [PubMed]
  9. J. C. Gutiérrez-Vega, M. D. Iturbe-Castillo, G. A. Ramírez, E. Tepichín, R. M. Rodríguez-Dagnino, S. Chávez-Cerda, G. H. C. New, “Experimental demonstration of optical Mathieu beams,” Opt. Commun. 195(1-4), 35–40 (2001). [CrossRef]
  10. J. Durnin, J. J. Miceli, J. H. Eberly, “Comparison of Bessel and Gaussian beams,” Opt. Lett. 13(2), 79–80 (1988). [CrossRef] [PubMed]
  11. A. J. Cox, J. D’Anna, “Constant-axial-intensity nondiffracting beam,” Opt. Lett. 17(4), 232–234 (1992). [CrossRef] [PubMed]
  12. Z. P. Jiang, Q. S. Lu, Z. J. Liu, “Propagation of apertured Bessel beams,” Appl. Opt. 34(31), 7183–7185 (1995). [CrossRef] [PubMed]
  13. R. D. Romea, W. D. Kimura, “Modeling of inverse Čerenkov laser acceleration with axicon laser-beam focusing,” Phy. Rev. D 42(5), 1807–1818 (1990). [CrossRef]
  14. S. C. Tidwell, D. H. Ford, W. D. Kimura, “Transporting and focusing radially polarized laser beams,” Opt. Eng. 31(7), 1527–1531 (1992). [CrossRef]
  15. R. H. Jordan, D. G. Hall, “Free-space azimuthal paraxial wave equation: the azimuthal Bessel-Gauss beam solution,” Opt. Lett. 19(7), 427–429 (1994). [CrossRef] [PubMed]
  16. D. G. Hall, “Vector-beam solutions of Maxwell’s wave equation,” Opt. Lett. 21(1), 9–11 (1996). [CrossRef] [PubMed]
  17. P. L. Greene, D. G. Hall, “Diffraction characteristics of the azimuthal Bessel-Gauss beam,” J. Opt. Soc. Am. A 13(5), 962–966 (1996). [CrossRef]
  18. P. L. Greene, D. G. Hall, “Properties and diffraction of vector Bessel–Gauss beams,” J. Opt. Soc. Am. A 15(12), 3020–3027 (1998). [CrossRef]
  19. D. N. Schimpf, W. P. Putnam, M. D. W. Grogan, S. Ramachandran, F. X. Kärtner, “Radially polarized Bessel-Gauss beams: decentered Gaussian beam analysis and experimental verification,” Opt. Express 21(15), 18469–18483 (2013). [CrossRef] [PubMed]
  20. C. J. R. Sheppard, S. Saghafi, “Transverse-electric and transverse-magnetic beam modes beyond the paraxial approximation,” Opt. Lett. 24(22), 1543–1545 (1999). [CrossRef] [PubMed]
  21. A. Flores-Pérez, J. Hernández-Hernández, R. Jáuregui, K. Volke-Sepúlveda, “Experimental generation and analysis of first-order TE and TM Bessel modes in free space,” Opt. Lett. 31(11), 1732–1734 (2006). [CrossRef] [PubMed]
  22. A. April, “Nonparaxial TM and TE beams in free space,” Opt. Lett. 33(14), 1563–1565 (2008). [CrossRef] [PubMed]
  23. Z. Bouchal, M. Olivík, “Non-diffractive vector Bessel beams,” J. Mod. Opt. 42(8), 1555–1566 (1995). [CrossRef]
  24. K. Volke-Sepulvea, E. Ley-Koo, “General construction and connections of vector propagation invariant optical fields: TE and TM modes and polarization states,” J. Opt. A, Pure Appl. Opt. 8(10), 867–877 (2006). [CrossRef]
  25. E. A. Essex, “Hertz vector potentials of electromagnetic theory,” Am. J. Phys. 45(11), 1099–1101 (1977). [CrossRef]
  26. Y. Z. Yu, W. B. Dou, “Vector analyses of nondiffracting Bessel beams,” Prog. Electromagn. Res. Lett. 5, 57–71 (2008). [CrossRef]
  27. M. Ornigotti, A. Aiello, “Radially and azimuthally polarized nonparaxial Bessel beams made simple,” Opt. Express 21(13), 15530–15537 (2013). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited