OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7875–7882

All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes

Jianfeng Li, Zuxing Zhang, Zhongyuan Sun, Hongyu Luo, Yong Liu, Zhijun Yan, Chengbo Mou, Lin Zhang, and Sergei K. Turitsyn  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7875-7882 (2014)
http://dx.doi.org/10.1364/OE.22.007875


View Full Text Article

Enhanced HTML    Acrobat PDF (1276 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A self-starting all-fiber passively mode-locked Tm3+-doped fiber laser based on nonlinear loop mirror (NOLM) is demonstrated. Stable soliton pulses centered at 2017.33 nm with 1.56 nm FWHM were produced at a repetition rate of 1.514 MHz with pulse duration of 2.8 ps and pulse energy of 83.8 pJ. As increased pump power, the oscillator can also operate at noise-like (NL) regime. Stable NL pulses with coherence spike width of 341 fs and pulse energy of up to 249.32 nJ was achieved at a center wavelength of 2017.24 nm with 21.33 nm FWHM. To the best of our knowledge, this is the first 2 µm region NOLM-based mode-locked fiber laser operating at two regimes with the highest single pulse energy for NL pulses.

© 2014 Optical Society of America

OCIS Codes
(140.3480) Lasers and laser optics : Lasers, diode-pumped
(140.3510) Lasers and laser optics : Lasers, fiber

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: February 7, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 14, 2014
Published: March 27, 2014

Citation
Jianfeng Li, Zuxing Zhang, Zhongyuan Sun, Hongyu Luo, Yong Liu, Zhijun Yan, Chengbo Mou, Lin Zhang, and Sergei K. Turitsyn, "All-fiber passively mode-locked Tm-doped NOLM-based oscillator operating at 2-μm in both soliton and noisy-pulse regimes," Opt. Express 22, 7875-7882 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7875


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. R. C. Sharp, D. E. Spock, N. Pan, J. Elliot, “190-fs passively mode-locked thulium fiber laser with a low threshold,” Opt. Lett. 21(12), 881–883 (1996). [CrossRef] [PubMed]
  2. Q. Wang, J. Geng, T. Luo, S. Jiang, “Mode-locked 2 mum laser with highly thulium-doped silicate fiber,” Opt. Lett. 34(23), 3616–3618 (2009). [CrossRef] [PubMed]
  3. Q. Wang, J. Geng, T. Luo, S. Jiang, “2 µm mode-locked fiber laser,” Proc. SPIE 8237, 82371N (2012).
  4. M. A. Solodyankin, E. D. Obraztsova, A. S. Lobach, A. I. Chernov, A. V. Tausenev, V. I. Konov, E. M. Dianov, “Mode-locked 1.93 microm thulium fiber laser with a carbon nanotube absorber,” Opt. Lett. 33(12), 1336–1338 (2008). [CrossRef] [PubMed]
  5. K. Kieu, F. W. Wise, “Soliton Thulium-doped fiber laser with carbon nanotube saturable absorber,” IEEE Photonics Technol. Lett. 21(3), 128–130 (2009). [CrossRef] [PubMed]
  6. Q. Q. Wang, T. Chen, M. Li, B. Zhang, Y. Lu, K. P. Chen, “All-fiber ultrafast thulium-doped fiber ring laser with dissipative soliton and noise-like output in normal dispersion by single-wall carbon nanotubes,” Appl. Phys. Lett. 103(1), 011103 (2013). [CrossRef]
  7. J. Liu, S. D. Wu, J. Xu, Q. Wang, Q. H. Yang, and P. Wang, “Mode-locked 2 μm thulium-doped fiber laser with graphene oxide saturable absorber,” in Lasers and Electro-Optics (CLEO), Technical Digest (Optical Society of America, 2012), paper JW2A.76.
  8. M. Zhang, E. J. R. Kelleher, F. Torrisi, Z. Sun, T. Hasan, D. Popa, F. Wang, A. C. Ferrari, S. V. Popov, J. R. Taylor, “Tm-doped fiber laser mode-locked by graphene-polymer composite,” Opt. Express 20(22), 25077–25084 (2012). [CrossRef] [PubMed]
  9. B. Fu, L. L. Gui, X. Li, X. S. Xiao, H. W. Zhu, C. X. Yang, “Generation of 35-nJ nanosecond pulse from a passively mode-locked Tm, Ho-codoped fiber laser with graphene saturable absorber,” IEEE Photonics Technol. Lett. 25(15), 1447–1449 (2013). [CrossRef]
  10. L. E. Nelson, E. P. Ippen, H. A. Haus, “Broadly tunable sub-500 fs pulses from an additive-pulse mode-locked thulium-doped fiber ring laser,” Appl. Phys. Lett. 67(1), 19–21 (1995). [CrossRef]
  11. Q. Wang, T. Chen, B. Zhang, A. P. Heberle, K. P. Chen, “All-fiber passively mode-locked thulium-doped fiber ring oscillator operated at solitary and noiselike modes,” Opt. Lett. 36(19), 3750–3752 (2011). [CrossRef] [PubMed]
  12. X. He, A. Luo, Q. Yang, T. Yang, X. Yuan, S. Xu, Q. Qian, D. Chen, Z. Luo, W. Xu, Z. Yang, “60 nm bandwidth, 17 nJ noiselike pulse generation from a thulium-doped fiber ring laser,” Appl. Phys. Express 6(11), 112702 (2013). [CrossRef]
  13. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, N. R. Arutyunyan, A. S. Pozharov, E. D. Obraztsova, E. M. Dianov, “Thulium-doped mode-locked all-fiber laser based on NALM and carbon nanotube saturable absorber,” Opt. Express 20(26), B124–B130 (2012). [CrossRef] [PubMed]
  14. M. A. Chernysheva, A. A. Krylov, P. G. Kryukov, E. M. Dianov, “Nonlinear amplifying loop-mirror-based mode-locked thulium-doped fiber laser,” IEEE Photonics Technol. Lett. 24(14), 1254–1256 (2012). [CrossRef]
  15. M. A. Chernysheva, A. Krylov, C. Mou, R. Arif, A. Rozhin, M. H. Rümmeli, S. Turitsyn, and E. M. Dianov, “300-mW average output power hybrid mode-locked thulium-doped fiber laser,” in Proc. ECOC (2013), paper P.1.9. [CrossRef]
  16. C. W. Rudy, M. J. F. Digonnet, and R. L. Byer, “Thulium-doped germanosilicate mode-locked fiber lasers,” in Fiber Laser Applications (FILAS), Lasers, Sources, and Related Photonic Devices Technical Digest (Optical Society of America, 2012), FTh4A.
  17. C. W. Rudy, K. E. Urbanek, M. J. F. Digonnet, R. L. Byer, “Amplified 2-µm thulium-ooped all-fiber mode-locked figure-eight laser,” J. Lightwave Technol. 31(11), 1809–1812 (2013). [CrossRef]
  18. Q. Wang, J. H. Geng, Z. Jiang, T. Luo, S. B. Jiang, “Mode-locked Tm–Ho-codoped fiber laser at 2.06 μm,” IEEE Photonics Technol. Lett. 23(11), 682–684 (2011). [CrossRef]
  19. G. P. Agrawal, Nonlinear Fiber Optics, 4th ed. (Academic, 2007).
  20. L. Zhang, A. R. El-Damak, Y. Feng, X. Gu, “Experimental and numerical studies of mode-locked fiber laser with large normal and anomalous dispersion,” Opt. Express 21(10), 12014–12021 (2013). [CrossRef] [PubMed]
  21. L. M. Zhao, D. Y. Tang, “Generation of 15-nJ bunched noise-like pulses with 93-nm bandwidth in an erbium-doped fiber ring laser,” Appl. Phys. B 83(4), 553–557 (2006). [CrossRef]
  22. M. Horowitz, Y. Barad, Y. Silberberg, “Noiselike pulses with a broadband spectrum generated from an erbium-doped fiber laser,” Opt. Lett. 22(11), 799–801 (1997). [CrossRef] [PubMed]
  23. O. Pottiez, R. Grajales-Coutiño, B. Ibarra-Escamilla, E. A. Kuzin, J. C. Hernández-García, “Adjustable noiselike pulses from a figure-eight fiber laser,” Appl. Opt. 50(25), E24–E31 (2011). [CrossRef]
  24. S. Lin, S. Hwang, J. Liu, “Supercontinuum generation in highly nonlinear fibers using amplified noise-like optical pulses,” Opt. Express 22(4), 4152–4160 (2014). [CrossRef]
  25. A. Zaytsev, C. H. Lin, Y. J. You, C. C. Chung, C. L. Wang, C. L. Pan, “Supercontinuum generation by noise-like pulses transmitted through normally dispersive standard single-mode fibers,” Opt. Express 21(13), 16056–16062 (2013). [CrossRef] [PubMed]
  26. S. K. Turitsyn, B. Bale, M. P. Fedoruk, “Dispersion-managed solitons in fibre systems and lasers,” Phys. Rep. 521(4), 135–203 (2012). [CrossRef]
  27. B. Bale, O. G. Okhotnikov, and S. K. Turitsyn, “Modeling and technologies of ultrafast fiber lasers,” in Fiber Lasers (Wiley-VCH, 2012).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited