OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7883–7897

Formation of super-resolution spot through nonlinear Fabry–Perot cavity structures: theory and simulation

Jingsong Wei, Rui Wang, Hui Yan, and Yongtao Fan  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7883-7897 (2014)
http://dx.doi.org/10.1364/OE.22.007883


View Full Text Article

Enhanced HTML    Acrobat PDF (2163 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This study explores how interference manipulation breaks through the diffraction limit and induces super-resolution nano-optical hot spots through the nonlinear Fabry–Perot cavity structure. The theoretical analytical model is established, and the numerical simulation results show that when the thickness of the nonlinear thin film inside the nonlinear Fabry–Perot cavity structure is adjusted to centain value, the constructive interference effect can be formed in the central point of the spot, which causes the nanoscale optical hot spot in the central region to be produced. The simulation results also tell us that the hot spot size is sensitive to nonlinear thin film thickness, and the accuracy is required to be up to nanometer or even subnanometer scale, which is very large challenging for thin film deposition technique, however, slightly changing the incident laser power can compensate for drawbacks of low thickness accuracy of nonlinear thin films. Taking As2S3 as the nonlinear thin film, the central hot spot with a size of 40nm is obtained at suitable nonlinear thin film thickness and incident laser power. The central hot spot size is only about λ/16 , which is very useful in super-high density optical recording, nanolithography, and high-resolving optical surface imaging.

© 2014 Optical Society of America

OCIS Codes
(100.6640) Image processing : Superresolution
(120.2230) Instrumentation, measurement, and metrology : Fabry-Perot
(190.4360) Nonlinear optics : Nonlinear optics, devices

ToC Category:
Physical Optics

History
Original Manuscript: February 7, 2014
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 18, 2014
Published: March 27, 2014

Citation
Jingsong Wei, Rui Wang, Hui Yan, and Yongtao Fan, "Formation of super-resolution spot through nonlinear Fabry–Perot cavity structures: theory and simulation," Opt. Express 22, 7883-7897 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7883


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. B. Hyot, S. Olivier, M. F. Armand, F. Laulagnet, B. Andre, R. Truche, and X. Biquard, “High capacity Super-RENS ROM disc with InSb active layer,” E*PCOS09 European Symposium Phase Change and Ovonic Sciences, 1–8 (2009).
  2. W. C. Liu, M. Y. Ng, D. P. Tsai, “Surface Plasmon Effects on the Far-Field Signals of AgOx-Type Super Resolution Near-Field Structure,” Jpn. J. Appl. Phys. 43(7B), 4713–4717 (2004). [CrossRef]
  3. Y. Zha, J. Wei, F. Gan, “A novel design for maskless direct laser writing nanolithography: combination of diffractive optical element and nonlinear absorption inorganic resists,” Opt. Commun. 304, 49–53 (2013). [CrossRef]
  4. M. Keller, Xiao, S. Bozhevolnyi, “Configurational resonances in optical near-field microscopy: a rigorous point-dipole approach,” Surf. Sci. 280(1-2), 217–230 (1993). [CrossRef]
  5. X. Tsampoula, M. Mazilu, T. Vettenburg, F. Gunn-Moore, K. Dholakia, “Enhanced cell transfection using subwavelength focused optical eigenmode beams,” Photon. Res. 1(1), 42–46 (2013). [CrossRef]
  6. M. Xiao, N. Rakov, “Enhanced optical near-field transmission through subwavelength holes randomly distributed in a thin gold film,” J. Phys. Condens. Matter 15(4), L133–L137 (2003). [CrossRef]
  7. S. Cao, W. Yu, C. Wang, Y. Fu, “Tuning the focusing spot of plasmonic nanolens by aspect ratio under linear polarization,” Chin. Opt. Lett. 12(1), 012401 (2014). [CrossRef]
  8. L. Pan, Y. Park, Y. Xiong, E. Ulin-Avila, Y. Wang, L. Zeng, S. Xiong, J. Rho, C. Sun, D. B. Bogy, X. Zhang, “Maskless plasmonic lithography at 22 nm resolution,” Sci. Rep. 1, 175 (2011). [CrossRef] [PubMed]
  9. S. Dastjerdi, M. Ghanaatshoar, T. Hattori, “Design and analysis of superlens based on complex two-dimensional square lattice photonic crystal,” Chin. Opt. Lett. 11(10), 102303 (2013). [CrossRef]
  10. N. Fang, H. Lee, C. Sun, X. Zhang, “Sub-diffraction-limited optical imaging with a silver superlens,” Science 308(5721), 534–537 (2005). [CrossRef] [PubMed]
  11. M. Khosravi, R. A. Sadeghzadeh, M. S. Abrishamian, “Nanospheroidal particles as convenient nanoantenna elements,” Chin. Opt. Lett. 11, 112503 (2013). [CrossRef]
  12. J. Zhao, G. Zheng, S. Li, H. Zhou, Y. Ma, R. Zhang, Y. Shi, P. He, “A hyperlens-based device for nanoscale focusing of light,” Chin. Opt. Lett. 10(4), 042302 (2012). [CrossRef]
  13. S. M. Manfield, G. S. Kino, “Solid immersion microscope,” Appl. Phys. Lett. 57(24), 2615–2617 (1990). [CrossRef]
  14. J. Wei, Y. Zha, F. Gan, “Creation of super-Resolution non-diffraction beam by modulating circularly polarized light with ternary optical element,” Prog. Electromagnetics Res. 140, 589–598 (2013).
  15. H. Wang, L. Shi, B. Lukyanchuk, C. Sheppard, C. T. Chong, “Creation of a needle of longitudinally polarized light in vacuum using binary optics,” Nat. Photonics 2(8), 501–505 (2008). [CrossRef]
  16. Y. Zha, J. Wei, F. Gan, “Creation of ultra-long depth of focus super-resolution longitudinally polarized beam with ternary optical element,” J. Opt. 15(7), 075703 (2013). [CrossRef]
  17. N. Kundtz, D. R. Smith, “Extreme-angle broadband metamaterial lens,” Nat. Mater. 9(2), 129–132 (2010). [CrossRef] [PubMed]
  18. X. Hao, C. Kuang, Y. Li, X. Liu, Y. Ku, Y. Jiang, “Hydrophilic microsphere based mesoscopic-lens microscope,” Opt. Commun. 285(20), 4130–4133 (2012). [CrossRef]
  19. J. W. Lichtman, J. A. Conchello, “Fluorescence microscopy,” Nat. Methods 2(12), 910–919 (2005). [CrossRef] [PubMed]
  20. J. Wei, S. Liu, Y. Geng, Y. Wang, X. Li, Y. Wu, A. Dun, “Nano-optical information storage induced by the nonlinear saturable absorption effect,” Nanoscale 3(8), 3233–3237 (2011). [CrossRef] [PubMed]
  21. J. Tominaga, T. Nakano, N. Atoda, “An approach for recording and readout beyond the diffraction limit with an Sb thin film,” Appl. Phys. Lett. 73(15), 2078 (1998). [CrossRef]
  22. S. Ushiba, S. Shoji, P. Kuray, K. Masui, J. Kono, S. Kawata, “Two photon polymerization lithography for 3D microfabrication of single wall carbon nanotube/polymer composites,” Proc. SPIE 8613, 86130Y (2013). [CrossRef]
  23. H. Sun, S. Kawata, “Two-photon photopolymerization and 3D lithographic micro-fabrication,” Adv. Polymer Sci. 170, 169–273 (2004).
  24. X. Ma, J. Wei, “Nanoscale lithography with visible light: optical nonlinear saturable absorption effect induced nanobump pattern structures,” Nanoscale 3(4), 1489–1492 (2011). [CrossRef] [PubMed]
  25. L. E. Helseth, “Breaking the diffraction limit in nonlinear materials,” Opt. Commun. 256(4-6), 435–438 (2005). [CrossRef]
  26. A. Goy, D. Psaltis, “Imaging in focusing Kerr media using reverse propagation,” Photon. Res. 1(2), 96–101 (2013). [CrossRef]
  27. K. B. Song, J. Lee, J. H. Kim, K. Cho, S. K. Kim, “Direct observation of self-focusing with subdiffraction limited resolution using near-field scanning optical microscope,” Phys. Rev. Lett. 85(18), 3842–3845 (2000). [CrossRef] [PubMed]
  28. H. H. Lee, K. M. Chae, S. Y. Yim, S. H. Park, “Finite-difference time-domain analysis of self-focusing in a nonlinear Kerr film,” Opt. Express 12(12), 2603–2609 (2004). [CrossRef] [PubMed]
  29. K. Chew, J. Osman, D. R. Tilley, “The nonlinear Fabry–Pérot resonator: direct numerical integration,” Opt. Commun. 191(3-6), 393–404 (2001). [CrossRef]
  30. F. Michelotti, F. Caiazza, G. Liakhou, S. Paoloni, M. Bertolotti, “Effects of nonlinear Fabry-Perot resonator response on z-scan measurements,” Opt. Commun. 124(1-2), 103–110 (1996). [CrossRef]
  31. E. Abraham, S. D. Smith, “Nonlinear Fabry-Perot interferometers,” J. Phys. E. 15(1), 33–39 (1982). [CrossRef]
  32. M. Kreuzer, H. Gottschling, R. Neubecker, T. Tschudi, “Analysis of dynamic pattern formation in nonlinear Fabry-Perot resonators,” Appl. Phys. B 59(6), 581–589 (1994). [CrossRef]
  33. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. P. Mosk, “Scattering Lens Resolves Sub-100 nm Structures with Visible Light,” Phys. Rev. Lett. 106(19), 193905 (2011). [CrossRef] [PubMed]
  34. A. Sentenac, P. C. Chaumet, “Subdiffraction light focusing on a grating substrate,” Phys. Rev. Lett. 101(1), 013901 (2008). [CrossRef] [PubMed]
  35. J. Wei, M. Xiao, F. Zhang, “Super-resolution with a nonlinear thin film: beam reshaping via internal multi-interference,” Appl. Phys. Lett. 89(22), 223126 (2006). [CrossRef]
  36. M. Born and E. Wolf, Principles of Optics, 7th ed. (Cambridge University, 1999).
  37. W. Robert, Boyd, Nonlinear optics, 2nd ed. (Academic, 2003).
  38. R. Wang, J. Wei, “Parabolic approximation analytical model of super-resolution spot generation using nonlinear thin films: theory and simulation,” Opt. Commun. 316, 220–227 (2014). [CrossRef]
  39. K. Tanaka, H. Hisakuni, “Photoinduced phenomena in As2S3 glass under sub-bandgap excitation,” J. Non-Crystalline Solids 198–200, 714–718 (1996). [CrossRef]
  40. N. Pinna and M. Knez, Atomic Layer Deposition of Nanostructured Materials (Wiley-VCH, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited