OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7898–7905

Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks

Daisuke Akamatsu, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tanabe, Atsushi Onae, and Feng-Lei Hong  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7898-7905 (2014)
http://dx.doi.org/10.1364/OE.22.007898


View Full Text Article

Enhanced HTML    Acrobat PDF (1866 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The frequency ratio of the 1S0(F = 1/2)-3P0(F = 1/2) clock transition in 171Yb and the 1S0(F = 9/2)-3P0(F = 9/2) clock transition in 87Sr is measured by an optical-optical direct frequency link between two optical lattice clocks. We determined the ratio (νYb/νSr) to be 1.207 507 039 343 340 4(18) with a fractional standard uncertainty of 1.5 × 10−15. The measurement uncertainty of the frequency ratio is smaller than that obtained from absolute frequency measurements using the International Atomic Time (TAI) link. The measured ratio agrees well with that derived from the absolute frequency measurement results obtained at NIST and JILA, Boulder, CO using their Cs-fountain clock. Our measurement enables the first international comparison of the frequency ratios of optical clocks. The measured frequency ratio will be reported to the International Committee for Weights and Measures for a discussion related to the redefinition of the second.

© 2014 Optical Society of America

OCIS Codes
(120.3940) Instrumentation, measurement, and metrology : Metrology
(140.4050) Lasers and laser optics : Mode-locked lasers
(140.3425) Lasers and laser optics : Laser stabilization
(020.3320) Atomic and molecular physics : Laser cooling

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: February 10, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 20, 2014
Published: March 27, 2014

Citation
Daisuke Akamatsu, Masami Yasuda, Hajime Inaba, Kazumoto Hosaka, Takehiko Tanabe, Atsushi Onae, and Feng-Lei Hong, "Frequency ratio measurement of 171Yb and 87Sr optical lattice clocks," Opt. Express 22, 7898-7905 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7898


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. C. W. Chou, D. B. Hume, J. C. J. Koelemeij, D. J. Wineland, T. Rosenband, “Frequency comparison of two high-accuracy Al+ optical clocks,” Phys. Rev. Lett. 104(7), 070802 (2010). [CrossRef] [PubMed]
  2. N. Hinkley, J. A. Sherman, N. B. Phillips, M. Schioppo, N. D. Lemke, K. Beloy, M. Pizzocaro, C. W. Oates, A. D. Ludlow, “An atomic clock with 10-18 instability,” Science 341(6151), 1215–1218 (2013). [CrossRef] [PubMed]
  3. B. J. Bloom, T. L. Nicholson, J. R. Williams, S. L. Campbell, M. Bishof, X. Zhang, W. Zhang, S. L. Bromley, J. Ye, “An optical lattice clock with accuracy and stability at the 10-18 level,” Nature 506(7486), 71–75 (2014). [CrossRef] [PubMed]
  4. C. W. Chou, D. B. Hume, T. Rosenband, D. J. Wineland, “Optical clocks and relativity,” Science 329(5999), 1630–1633 (2010). [CrossRef] [PubMed]
  5. M. Takamoto, F.-L. Hong, R. Higashi, H. Katori, “An optical lattice clock,” Nature 435(7040), 321–324 (2005). [CrossRef] [PubMed]
  6. G. K. Campbell, A. D. Ludlow, S. Blatt, J. W. Thomsen, M. J. Martin, M. H. G. de Miranda, T. Zelevinsky, M. M. Boyd, J. Ye, S. A. Diddams, T. P. Heavner, T. E. Parker, S. R. Jefferts, “The absolute frequency of the 87Sr optical clock transition,” Metrologia 45(5), 539–548 (2008). [CrossRef]
  7. R. Le Targat, L. Lorini, Y. Le Coq, M. Zawada, J. Guéna, M. Abgrall, M. Gurov, P. Rosenbusch, D. G. Rovera, B. Nagórny, R. Gartman, P. G. Westergaard, M. E. Tobar, M. Lours, G. Santarelli, A. Clairon, S. Bize, P. Laurent, P. Lemonde, J. Lodewyck, “Experimental realization of an optical second with strontium lattice clocks,” Nat. Commun. 4, 2109 (2013). [PubMed]
  8. F.-L. Hong, M. Musha, M. Takamoto, H. Inaba, S. Yanagimachi, A. Takamizawa, K. Watabe, T. Ikegami, M. Imae, Y. Fujii, M. Amemiya, K. Nakagawa, K. Ueda, H. Katori, “Measuring the frequency of a Sr optical lattice clock using a 120 km coherent optical transfer,” Opt. Lett. 34(5), 692–694 (2009). [CrossRef] [PubMed]
  9. S. Falke, H. Schnatz, J. S. R. V. Winfred, T. Middelmann, S. Vogt, S. Weyers, B. Lipphardt, G. Grosche, F. Riehle, U. Sterr, C. Lisdat, “The 87Sr optical frequency standard at PTB,” Metrologia 48(5), 399–407 (2011). [CrossRef]
  10. A. Yamaguchi, N. Shiga, S. Nagano, Y. Li, H. Ishijima, H. Hachisu, M. Kumagai, T. Ido, “Stability transfer between two clock lasers operating at different wavelengths for absolute frequency measurement of clock transition in 87Sr,” Appl. Phys. Express 5(2), 022701 (2012). [CrossRef]
  11. D. Akamatsu, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, “Spectroscopy and frequency measurement of the 87Sr clock transition by laser linewidth transfer using an optical frequency comb,” Appl. Phys. Express 7(1), 012401 (2014). [CrossRef]
  12. M. Yasuda, H. Inaba, T. Kohno, T. Tanabe, Y. Nakajima, K. Hosaka, D. Akamatsu, A. Onae, T. Suzuyama, M. Amemiya, F.-L. Hong, “Improved absolute frequency measurement of the 171Yb optical lattice clock towards a candidate for the redefinition of the second,” Appl. Phys. Express 5(10), 102401 (2012). [CrossRef]
  13. N. D. Lemke, A. D. Ludlow, Z. W. Barber, T. M. Fortier, S. A. Diddams, Y. Jiang, S. R. Jefferts, T. P. Heavner, T. E. Parker, C. W. Oates, “Spin-1/2 optical lattice clock,” Phys. Rev. Lett. 103(6), 063001 (2009). [CrossRef] [PubMed]
  14. C. Y. Park, D.-H. Yu, W.-K. Lee, S. E. Park, E. B. Kim, S. K. Lee, J. W. Cho, T. H. Yoon, J. Mun, S. J. Park, T. Y. Kwon, S.-B. Lee, “Absolute frequency measurement of 1S0 (F=1/2)-3P0 (F=1/2) transition of 171Yb atoms in a one-dimensional optical lattice at KRISS,” Metrologia 50(2), 119–128 (2013). [CrossRef]
  15. S. Blatt, A. D. Ludlow, G. K. Campbell, J. W. Thomsen, T. Zelevinsky, M. M. Boyd, J. Ye, X. Baillard, M. Fouché, R. Le Targat, A. Brusch, P. Lemonde, M. Takamoto, F.-L. Hong, H. Katori, V. V. Flambaum, “New limits on coupling of fundamental constants to gravity using 87Sr optical lattice clocks,” Phys. Rev. Lett. 100(14), 140801 (2008). [CrossRef] [PubMed]
  16. T. Rosenband, D. B. Hume, P. O. Schmidt, C. W. Chou, A. Brusch, L. Lorini, W. H. Oskay, R. E. Drullinger, T. M. Fortier, J. E. Stalnaker, S. A. Diddams, W. C. Swann, N. R. Newbury, W. M. Itano, D. J. Wineland, J. C. Bergquist, “Frequency ratio of Al+ and Hg+ single-ion optical clocks; metrology at the 17th decimal place,” Science 319(5871), 1808–1812 (2008). [CrossRef] [PubMed]
  17. K. Matsubara, H. Hachisu, Y. Li, S. Nagano, C. Locke, A. Nogami, M. Kajita, K. Hayasaka, T. Ido, M. Hosokawa, “Direct comparison of a Ca+ single-ion clock against a Sr lattice clock to verify the absolute frequency measurement,” Opt. Express 20(20), 22034–22041 (2012). [CrossRef] [PubMed]
  18. H. Inaba, K. Hosaka, M. Yasuda, Y. Nakajima, K. Iwakuni, D. Akamatsu, S. Okubo, T. Kohno, A. Onae, F.-L. Hong, “Spectroscopy of 171Yb in an optical lattice based on laser linewidth transfer using a narrow linewidth frequency comb,” Opt. Express 21(7), 7891–7896 (2013). [CrossRef] [PubMed]
  19. M. Takamoto, T. Takano, H. Katori, “Frequency comparison of optical lattice clocks beyond the Dick limit,” Nat. Photonics 5(5), 288–292 (2011). [CrossRef]
  20. Y. Nakajima, H. Inaba, K. Hosaka, K. Minoshima, A. Onae, M. Yasuda, T. Kohno, S. Kawato, T. Kobayashi, T. Katsuyama, F.-L. Hong, “A multi-branch, fiber-based frequency comb with millihertz-level relative linewidths using an intra-cavity electro-optic modulator,” Opt. Express 18(2), 1667–1676 (2010). [CrossRef] [PubMed]
  21. K. Iwakuni, H. Inaba, Y. Nakajima, T. Kobayashi, K. Hosaka, A. Onae, F.-L. Hong, “Narrow linewidth comb realized with a mode-locked fiber laser using an intra-cavity waveguide electro-optic modulator for high-speed control,” Opt. Express 20(13), 13769–13776 (2012). [CrossRef] [PubMed]
  22. D. Akamatsu, Y. Nakajima, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, F.-L. Hong, “Narrow linewidth laser system realized by linewidth transfer using a fiber-based frequency comb for the magneto-optical trapping of strontium,” Opt. Express 20(14), 16010–16016 (2012). [CrossRef] [PubMed]
  23. F.-L. Hong, H. Inaba, K. Hosaka, M. Yasuda, A. Onae, “Doppler-free spectroscopy of molecular iodine using a frequency-stable light source at 578 nm,” Opt. Express 17(3), 1652–1659 (2009). [CrossRef] [PubMed]
  24. D. Akamatsu, M. Yasuda, T. Kohno, A. Onae, F.-L. Hong, “A compact light source at 461 nm using a periodically poled LiNbO3 waveguide for strontium magneto-optical trapping,” Opt. Express 19(3), 2046–2051 (2011). [CrossRef] [PubMed]
  25. M. Yasuda, T. Kohno, H. Inaba, Y. Nakajima, K. Hosaka, A. Onae, F.-L. Hong, “Fiber-comb-stabilized light source at 556 nm for magneto-optical trapping of ytterbium,” J. Opt. Soc. Am. B 27(7), 1388–1393 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited