OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7906–7924

Atmospheric correction of HJ-1 CCD imagery over turbid lake waters

Minwei Zhang, Junwu Tang, Qing Dong, Hongtao Duan, and Qian Shen  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7906-7924 (2014)
http://dx.doi.org/10.1364/OE.22.007906


View Full Text Article

Enhanced HTML    Acrobat PDF (6740 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We have presented an atmospheric correction algorithm for HJ-1 CCD imagery over Lakes Taihu and Chaohu with highly turbid waters. The Rayleigh scattering radiance (Lr) is calculated using the hyperspectral Lr with a wavelength interval 1nm. The hyperspectral Lr is interpolated from Lr in the central wavelengths of MODIS bands, which are converted from the band response-averaged Lr calculated using the Rayleigh look up tables (LUTs) in SeaDAS6.1. The scattering radiance due to aerosol (La) is interpolated from La at MODIS band 869nm, which is derived from MODIS imagery using a shortwave infrared atmospheric correction scheme. The accuracy of the atmospheric correction algorithm is firstly evaluated by comparing the CCD measured remote sensing reflectance (Rrs) with MODIS measurements, which are validated by the in situ data. The CCD measured Rrs is further validated by the in situ data for a total of 30 observation stations within ± 1h time window of satellite overpass and field measurements. The validation shows the mean relative errors about 0.341, 0.259, 0.293 and 0.803 at blue, green, red and near infrared bands.

© 2014 Optical Society of America

OCIS Codes
(010.0010) Atmospheric and oceanic optics : Atmospheric and oceanic optics
(010.1285) Atmospheric and oceanic optics : Atmospheric correction
(010.0280) Atmospheric and oceanic optics : Remote sensing and sensors

ToC Category:
Atmospheric and Oceanic Optics

History
Original Manuscript: February 14, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 14, 2014
Published: March 27, 2014

Citation
Minwei Zhang, Junwu Tang, Qing Dong, Hongtao Duan, and Qian Shen, "Atmospheric correction of HJ-1 CCD imagery over turbid lake waters," Opt. Express 22, 7906-7924 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7906


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Li, Y. Xue, X. He, J. Guang, “High-resolution aerosol remote sensing retrieval over urban areas by synergetic use of HJ-1 CCD and MODIS data,” Atmos. Environ. 46, 173–180 (2012).
  2. H. R. Gordon, M. Wang, “Retrieval of water-leaving radiance and aerosol optical thickness over the oceans with SeaWiFS: a preliminary algorithm,” Appl. Opt. 33(3), 443–452 (1994). [CrossRef] [PubMed]
  3. A. Morel, L. Prieur, “Analysis of variations in ocean color,” Limnol. Oceanogr. 22(4), 709–722 (1977). [CrossRef]
  4. D. A. Siegel, M. Wang, S. Maritorena, W. Robinson, “Atmospheric correction of satellite ocean color imagery: the black pixel assumption,” Appl. Opt. 39(21), 3582–3591 (2000). [CrossRef] [PubMed]
  5. M. Wang, W. Shi, “Estimation of ocean contribution at the MODIS near-infrared wavelengths along the east coast of the U.S.: Two case studies,” Geophys. Res. Lett. 32(13), L13606 (2005). [CrossRef]
  6. R. A. Arnone, M. Sydor, R. W. Gould., “Remote sensing reflectance of case 2 waters,” Ocean Optics XIII 2963, 222–227 (1996). [CrossRef]
  7. X. He, D. Pan, “A practical method of atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Proc. SPIE 4892, 494–505 (2003). [CrossRef]
  8. S. J. Lavender, M. H. Pinkerton, G. F. Moore, J. Aiken, D. Blondeau-Patissier, “Modification to the atmospheric correction of SeaWiFS ocean color images over turbid waters,” Cont. Shelf Res. 25(4), 539–555 (2005). [CrossRef]
  9. J. Ding, J. Tang, Q. Song, X. Wang, “Atmospheric correction for Chinese coastal turbid waters using iteration and optimization method,” J. Remote Sens. 10, 732–741 (2006).
  10. C. Hu, K. L. Carder, F. E. Muller-Karger, “Atmospheric correction of SeaWiFS imagery over turbid coastal waters: a practical method,” Remote Sens. Environ. 74(2), 195–206 (2000). [CrossRef]
  11. K. G. Ruddick, F. Ovidio, M. Rijkeboer, “Atmospheric correction of SeaWiFS imagery for turbid coastal and inland waters,” Appl. Opt. 39(6), 897–912 (2000). [CrossRef] [PubMed]
  12. P. Dash, N. Walker, D. Mishra, E. d’Sa, S. Ladner, “Atmospheric correction and vicarious calibration of Oceansat-1 Ocean Color Monitor(OCM) data in coastal case 2 waters,” Remote Sens. 4(12), 1716–1740 (2012). [CrossRef]
  13. M. Wang, “Remote sensing of the ocean contributions from ultraviolet to near-infrared using the shortwave infrared bands: simulations,” Appl. Opt. 46(9), 1535–1547 (2007). [CrossRef] [PubMed]
  14. M. Wang, W. Shi, J. Tang, “Water property monitoring and assessment for China’s inland Lake Taihu from MODIS-Aqua measurements,” Remote Sens. Environ. 115(3), 841–854 (2011). [CrossRef]
  15. G. M. Hale, M. R. Querry, “Optical constants of water in the 200-nm to 200-micrometer wavelength region,” Appl. Opt. 12(3), 555–563 (1973). [CrossRef] [PubMed]
  16. L. Gross-Colzy, S. Colzy, R. Frouin, P. Henry, “A general ocean color atmospheric correction scheme based on principal components analysis: Part I. performance on Case 1 and Case 2 waters,” Proc. SPIE 6680, 668002 (2007). [CrossRef]
  17. T. Schroeder, I. Behnert, M. Schaale, J. Fischer, R. Doerffer, “Atmospheric correction algorithm for MERIS above case-2 waters,” Int. J. Remote Sens. 28(7), 1469–1486 (2007). [CrossRef]
  18. C. Hu, F. E. Muller-Karger, S. Andrefouet, K. L. Carder, “Atmospheric correction and cross-calibration of LANDSAT-7/ETM+ imagery over aquatic environments: A multiplatform approach using SeaWiFS/MODIS,” Remote Sens. Environ. 78(1–2), 99–107 (2001). [CrossRef]
  19. J. Li, B. Zhang, Z. Chen, Q. Shen, “Atmospheric correction of CBERS CCD images with MODIS data,” Sci. China Ser. E 49, 149–158 (2006).
  20. J. Chen, J. Fu, M. Zhang, “An atmospheric correction algorithm for Landsat/TM imagery basing on inverse distance spatial interpolation algorithm: a case study in Taihu Lake,” IEEE J. Sel. Top. Appl. Earth Observ. Remote Sens. 4(4), 882–889 (2011). [CrossRef]
  21. A. G. Dekker, R. J. Vos, S. W. Peters, “Comparison of remote sensing data, model results and in situ data for total suspended matter (TSM) in the southern Frisian lakes,” Sci. Total Environ. 268(1–3), 197–214 (2001). [CrossRef] [PubMed]
  22. C. Hu, Z. Chen, T. D. Clayton, P. Swarzenski, J. C. Brock, F. E. Muller-Karger, “Assessment of estuarine water-quality indicators using MODIS medium-resolution bands: initial results from Tampa Bay, Florida,” Remote Sens. Environ. 93(3), 423–441 (2004). [CrossRef]
  23. A. Morel, Y. Huot, B. Gentili, P. J. Werdell, S. B. Hooker, B. A. Franz, “Examining the consistency of products derived from various ocean color sensors in open ocean (Case 1) waters in the perspective of a multi-sensor approach,” Remote Sens. Environ. 111(1), 69–88 (2007). [CrossRef]
  24. M. Zhang, J. Tang, Q. Dong, Q. Song, J. Ding, “Retrieval of total suspended matter concentration in the Yellow and East China Seas from MODIS imagery,” Remote Sens. Environ. 114(2), 392–403 (2010). [CrossRef]
  25. J. Chen, W. Quan, G. Yao, T. Cui, “Retrieval of absorption and backscattering coefficients from HJ-1A/CCD imagery in coastal waters,” Opt. Express 21(5), 5803–5821 (2013). [CrossRef] [PubMed]
  26. J. Chen, W. Quan, “An improved algorithm for retrieving chlorophyll-a from the Yellow River Estuary using MODIS Imagery,” Environ. Monit. Assess. 185(3), 2243–2255 (2013). [CrossRef] [PubMed]
  27. L. Guo, P. Xie, L. Ni, W. Hu, H. Li, “The status of fishery resources of lake Chaohu and its response to eutrophication,” Acta Hydrobiol. Sin. 31, 700–705 (2007).
  28. J. L. Mueller, C. Davis, R. Arnone, R. Frouin, K. L. Carder, Z. Lee, R. G. Steward, S. Hooker, C. D. Mobley, and S. McLean, “Above-water radiance and remote sensing reflectance measurements and analysis protocols,” in Radiometric Measurements and Data Analysis Protocols, Vol. III in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 4, (2003), Chap. 3, pp. 21–30.
  29. C. D. Mobley, “Estimation of the remote-sensing reflectance from above-surface measurements,” Appl. Opt. 38(36), 7442–7455 (1999). [CrossRef] [PubMed]
  30. R. Ma, J. Tang, J. Dai, Y. Zhang, Q. Song, “Absorption and scattering properties of water body in Taihu Lake, China: absorption,” Int. J. Remote Sens. 27(19), 4277–4304 (2006). [CrossRef]
  31. M. Rijkeboer, A. G. Dekker, H. J. Gons, “Subsurface irradiance reflectance spectra of inland waters differing in morphometry and hydrology,” Aquat. Ecol. 31(3), 313–323 (1998). [CrossRef]
  32. D. Gurlin, A. A. Gitelson, W. J. Moses, “Remote estimation of chl-a concentration in turbid productive waters - Return to a simple two-band NIR-red model?” Remote Sens. Environ. 115(12), 3479–3490 (2011). [CrossRef]
  33. Y. Zhang, L. Feng, J. Li, L. Luo, Y. Yin, M. Liu, Y. Li, “Seasonal–spatial variation and remote sensing of phytoplankton absorption in Lake Taihu, a large eutrophic and shallow lake in China,” J. Plankton Res. 32(7), 1023–1037 (2010). [CrossRef]
  34. C. C. Trees, R. R. Bidigare, D. M. Karl, L. V. Heukelem, and J. Dore, “Fluorometric chlorophyll a: sampling, laboratory methods, and data analysis protocols,” in Biogeochemical and Bio-optical Measurements and Data Analysis Protocols, Vol. V in Ocean Optics Protocols for Satellite Ocean Color Sensor Validation, revision 5 (2003), Chap. 3, pp. 15–25.
  35. J. D. H. Strickland and T. R. Parsons, A Practical Handbook of Seawater Analysis, 2nd ed. (Board of Canada, 1972).
  36. M. Wang, “The Rayleigh lookup tables for the SeaWiFS data processing: accounting for the effects of ocean surface roughness,” Int. J. Remote Sens. 23(13), 2693–2702 (2002). [CrossRef]
  37. M. Wang, “A refinement for the Rayleigh radiance computation with variation of the atmospheric pressure,” Int. J. Remote Sens. 26(24), 5651–5663 (2005). [CrossRef]
  38. C. Cox, W. Munk, “Measurement of the roughness of the sea surface from photographs of the sun’s glitter,” J. Opt. Soc. Am. 44(11), 838–850 (1954). [CrossRef]
  39. M. Wang, S. W. Bailey, “Correction of sun glint contamination on the SeaWiFS ocean and atmosphere products,” Appl. Opt. 40(27), 4790–4798 (2001). [CrossRef] [PubMed]
  40. H. R. Gordon, M. Wang, “Influence of oceanic whitecaps on atmospheric correction of ocean-color sensors,” Appl. Opt. 33(33), 7754–7763 (1994). [CrossRef] [PubMed]
  41. W. W. Gregg, K. L. Carder, “A simple spectral solar irradiance model for cloudless maritime atmospheres,” Limnol. Oceanogr. 35(8), 1657–1675 (1990). [CrossRef]
  42. R. E. Eplee, W. D. Robinson, S. W. Bailey, D. K. Clark, P. J. Werdell, M. Wang, R. A. Barnes, C. R. McClain, “Calibration of SeaWiFS. II. vicarious techniques,” Appl. Opt. 40(36), 6701–6718 (2001). [CrossRef] [PubMed]
  43. H. R. Gordon, D. J. Castaño, “Aerosol analysis with the Coastal zone color scanner: A simple method for including multiple scattering effects,” Appl. Opt. 28(7), 1320–1326 (1989). [CrossRef] [PubMed]
  44. H. R. Gordon, D. J. Castaño, “Coastal zone color scanner atmospheric correction algorithm: multiple scattering effects,” Appl. Opt. 26(11), 2111–2122 (1987). [CrossRef] [PubMed]
  45. H. R. Gordon, “Remote sensing of ocean color: a methodology for dealing with broad spectral bands and significant out-of-band response,” Appl. Opt. 34(36), 8363–8374 (1995). [CrossRef] [PubMed]
  46. M. Zhang, R. Ma, J. Li, B. Zhang, H. Duan, “A validation study of an improved SWIR iterative atmospheric correction algorithm for MODIS-Aqua measurements in Lake Taihu, China,” IEEE Trans. Geosci. Remote Sens. 52, 4686–4695 (2014).
  47. M. Wang, S. Son, W. Shi, “Evaluation of MODIS SWIR and NIR-SWIR atmospheric correction algorithms using SeaBASS data,” Remote Sens. Environ. 113(3), 635–644 (2009). [CrossRef]
  48. H. R. Gordon, D. K. Clark, J. W. Brown, O. B. Brown, R. H. Evans, W. W. Broenkow, “Phytoplankton pigment concentrations in the Middle Atlantic Bight: comparison of ship determinations and CZCS estimates,” Appl. Opt. 22(1), 20–36 (1983). [CrossRef] [PubMed]
  49. S. W. Bailey, P. J. Werdell, “A multi-sensor approach for the on-orbit validation of ocean color satellite data products,” Remote Sens. Environ. 102(1–2), 12–23 (2006). [CrossRef]
  50. D. Wang, D. Morton, J. Masek, A. Wu, J. Nagol, X. Xiong, R. Levy, E. Vermote, R. Wolfe, “Impact of sensor degradation on the MODIS NDVI time series,” Remote Sens. Environ. 119, 55–61 (2012). [CrossRef]
  51. R. Ma, H. Duan, X. Gu, S. Zhang, “Detecting aquatic vegetation changes in Taihu Lake, China using multi-temporal satellite imagery,” Sensors 8(6), 3988–4005 (2008). [CrossRef]
  52. P. N. Reinersman, K. L. Carder, “Monte Carlo simulation of the atmospheric point-spread function with an application to correction for the adjacency effect,” Appl. Opt. 34(21), 4453–4471 (1995). [CrossRef] [PubMed]
  53. Q. Li, S. Niu, D. Xu, “Remote sensing of aerosol optical properties and air pollution with MFRSR measurements in Taihu region,” T. Atmos. Sci. 35, 364–371 (2012).
  54. L. Tian, J. Lu, X. Chen, Z. Yu, J. Xiao, F. Qiu, X. Zhao, “Atmospheric correction of HJ-1A/B CCD images over Chinese coastal waters using MODIS-Terra aerosol data,” Sci. China Ser. E 53(S1), 191–195 (2010). [CrossRef]
  55. Z. Yu, X. Chen, L. Tian, B. Zhou, “Atmospheric correction method for Poyang lake HJ-1A/B CCD image,” Geomatics Info. Sci. Wuhan U. 37, 1078–1082 (2012).
  56. R. L. Miller, B. A. McKee, “Using MODIS Terra 250 m imagery to map concentrations of total suspended matter in coastal waters,” Remote Sens. Environ. 93(1–2), 259–266 (2004). [CrossRef]
  57. V. Rodríguez-Guzmán, F. Gilbes-Santaella, “Using MODIS 250 m imagery to estimate total suspended sediment in a tropical open bay,” Int. J. Syst. Appl. Eng. Dev. 3, 36–44 (2009).
  58. B. Nechad, K. Ruddick, Y. Park, “Calibration and validation of a generic multisensor algorithm for mapping of total suspended matter in turbid waters,” Remote Sens. Environ. 114(4), 854–866 (2010). [CrossRef]
  59. G. Neukermans, K. Ruddick, E. Bernard, D. Ramon, B. Nechad, P. Y. Deschamps, “Mapping total suspended matter from geostationary satellites: a feasibility study with SEVIRI in the Southern North Sea,” Opt. Express 17(16), 14029–14052 (2009). [CrossRef] [PubMed]
  60. Z. Chen, C. Hu, F. Muller-Karger, “Monitoring turbidity in Tampa bay using MODIS/Aqua 250 m imagery,” Remote Sens. Environ. 109(2), 207–220 (2007). [CrossRef]
  61. G. Dall’Olmo, A. A. Gitelson, “Effect of bio-optical parameter variability on the remote estimation of chlorophyll-a concentration in turbid productive waters: experimental results,” Appl. Opt. 44(3), 412–422 (2005). [CrossRef] [PubMed]
  62. G. Zhou, Q. Liu, R. Ma, G. Tian, “Inversion of chlorophyll-a concentration in turbid water of lake Taihu based on optimized multi-spectral combination,” J. Lake Sci. 20, 153–159 (2008).
  63. C. Le, Y. Li, Y. Zha, D. Sun, C. Huang, H. Lu, “A four-band semi-analytical model for estimation chlorophyll a in highly turbid lakes: the case of Taihu Lake, China,” Remote Sens. Environ. 113(6), 1175–1182 (2009). [CrossRef]
  64. Z. Lee, M. Darecki, K. L. Carder, C. Davis, D. Stramski, W. J. Rhea, “Diffuse attenuation coefficient of downwelling irradiance: An evaluation of remote sensing methods,” J. Geophys. Res. 110, C02017 (2005).
  65. X. A. Xia, H. B. Chen, P. C. Wang, “Validation of MODIS aerosol retrievals and evaluation of potential cloud contamination in east Asia,” J. Environ. Sci. China 16(5), 832–837 (2004). [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited