OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7932–7946

A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers

Kyoungyoon Park and Yoonchan Jeong  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7932-7946 (2014)
http://dx.doi.org/10.1364/OE.22.007932


View Full Text Article

Enhanced HTML    Acrobat PDF (1192 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We propose a novel quasi-mode interpretation (QMI) method to represent acoustic radiation modes in acoustically antiguiding optical fibers (AAOFs) in terms of discrete quasi-modes. The QMI method readily enables one to obtain the full quasi-modal properties of AAOFs, including the complex propagation constants, mode center frequencies, and field distributions in an intuitive and much simplified way, compared to other previous methods. We apply the QMI method to analyze the Brillouin gain spectrum of an AAOF that has typically been used to mitigate stimulated Brillouin scattering of optical waves. The result based on the QMI method is in good agreement with the numerical and experimental results for the same fiber structure previously reported in the literature. Considering the effectiveness and simplicity of its numerical procedure, we expect the use of the QMI method can further be extended to even more complicated numerical analyses with acoustic radiation modes, which include the acoustically antiguiding, large-core optical fibers in multi-mode regimes.

© 2014 Optical Society of America

OCIS Codes
(060.2320) Fiber optics and optical communications : Fiber optics amplifiers and oscillators
(060.4370) Fiber optics and optical communications : Nonlinear optics, fibers
(290.5830) Scattering : Scattering, Brillouin

ToC Category:
Nonlinear Effects in Fibers

History
Original Manuscript: January 15, 2014
Revised Manuscript: March 3, 2014
Manuscript Accepted: March 18, 2014
Published: March 27, 2014

Virtual Issues
2013 Advanced Solid State Lasers (2013) Optics Express

Citation
Kyoungyoon Park and Yoonchan Jeong, "A quasi-mode interpretation of acoustic radiation modes for analyzing Brillouin gain spectra of acoustically antiguiding optical fibers," Opt. Express 22, 7932-7946 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7932


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. R. Chraplyvy, “Limitation on lightwave communication imposed by optical-fiber nonlinearities,” J. Lightwave Technol. 8(10), 1548–1557 (1990). [CrossRef]
  2. Y. Jeong, J. K. Sahu, D. J. Richardson, J. Nilsson, “Seeded erbium/ytterbium codoped fibre amplifier source with 87 W of single-frequency output power,” Electron. Lett. 39(24), 1717–1719 (2003). [CrossRef]
  3. Y. Jeong, J. K. Sahu, D. B. Soh, C. A. Codemard, J. Nilsson, “High-power tunable single-frequency single-mode erbium:ytterbium codoped large-core fiber master-oscillator power amplifier source,” Opt. Lett. 30(22), 2997–2999 (2005). [CrossRef] [PubMed]
  4. Y. Jeong, J. Nilsson, J. K. Sahu, D. B. S. Soh, C. Alegria, P. Dupriez, C. A. Codemard, D. N. Payne, R. Horley, L. M. B. Hickey, L. Wanzcyk, C. E. Chryssou, J. A. Alvarez-Chavez, P. W. Turner, “Single-frequency, single-mode, plane-polarized ytterbium-doped fiber master oscillator power amplifier source with 264 W of output power,” Opt. Lett. 30(5), 459–461 (2005). [CrossRef] [PubMed]
  5. Y. Jeong, J. Nilsson, J. K. Sahu, D. N. Payne, R. Horley, L. M. B. Hickey, P. W. Turner, “Power scaling of single-frequency Ytterbium-doped fiber master-oscillator power-amplifier sources up to 500 W,” IEEE J. Sel. Top. Quantum Electron. 13(3), 546–551 (2007). [CrossRef]
  6. Q. Fang, W. Shi, K. Kieu, E. Petersen, A. Chavez-Pirson, N. Peyghambarian, “High power and high energy monolithic single frequency 2 μm nanosecond pulsed fiber laser by using large core Tm-doped germanate fibers: experiment and modeling,” Opt. Express 20(15), 16410–16420 (2012). [CrossRef]
  7. C. A. S. de Oliveira, C. K. Jen, A. Shang, C. Saravanos, “Stimulated Brillouin scattering in cascaded fibers of different Brillouin frequency shift,” J. Opt. Soc. Am. B 10(6), 969–972 (1993). [CrossRef]
  8. A. Kobyakov, S. Kumar, D. Chowdhury, A. B. Ruffin, M. Sauer, S. R. Bickham, R. Mishra, “Design concept for optical fibers with enhanced SBS threshold,” Opt. Express 13(14), 5338–5346 (2005). [CrossRef] [PubMed]
  9. S. Gray, D. T. Walton, X. Chen, J. Wang, M.-J. Li, A. Liu, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “Optical fibers with tailored acoustic speed profiles for suppressing stimulated Brillouin scattering in high-power,” J. Lightwave Technol. 15, 37–46 (2009).
  10. Y. Koyamada, S. Sato, S. Nakamura, H. Sotobayashi, W. Chujo, “Simulating and designing Brillouin gain spectrum in single mode fibers,” J. Lightwave Technol. 22(2), 631–639 (2004). [CrossRef]
  11. M. D. Mermelstein, M. J. Andrejco, J. Fini, A. Yablon, C. Headley, D. J. DiGiovanni, A. H. McCurdy, “11.2 dB SBS gain suppression in a large mode area Yb-doped optical fiber,” Proc. SPIE 6873, U63–U69 (2008). [CrossRef]
  12. P. D. Dragic, “Ultra-flat Brillouin gain spectrum via linear combination of two acoustically anti-guiding optical fibers,” Electron. Lett. 48(23), 1492–1493 (2012). [CrossRef]
  13. P. D. Dragic, “Brillouin suppression by fiber design,” in Photonics Society Summer Topical Meeting Series, (IEEE, 2010), Paper TuC3.2.
  14. P. D. Dragic, C. H. Liu, G. C. Papen, and A. Galvanauskas, “Optical fiber with an acoustic guiding layer for stimulated Brillouin scattering suppression,” in Proceedings of the Conference on Lasers and Electro-optics, 2005 OSA Technical Digest Series (Optical Society of America, 2005), paper CThZ3. [CrossRef]
  15. S. Gray, A. Liu, D. T. Walton, J. Wang, M.-J. Li, X. Chen, A. B. Ruffin, J. A. Demeritt, L. A. Zenteno, “502 Watt, single transverse mode, narrow linewidth, bidirectionally pumped Yb-doped fiber amplifier,” Opt. Express 15(25), 17044–17050 (2007). [CrossRef] [PubMed]
  16. M. J. Li, X. Chen, J. Wang, S. Gray, A. Liu, J. A. Demeritt, A. B. Ruffin, A. M. Crowley, D. T. Walton, L. A. Zenteno, “Al/Ge co-doped large mode area fiber with high SBS threshold,” Opt. Express 15(13), 8290–8299 (2007). [CrossRef] [PubMed]
  17. S. Yoo, C. A. Codemard, Y. Jeong, J. K. Sahu, J. Nilsson, “Analysis and optimization of acoustic speed profiles with large transverse variations for mitigation of stimulated Brillouin scattering in optical fibers,” Appl. Opt. 49(8), 1388–1399 (2010). [CrossRef] [PubMed]
  18. P. D. Dragic, “Novel dual-Brillouin-frequency optical fiber for distributed temperature sensing,” Proc. SPIE 7197, 719710 (2009). [CrossRef]
  19. L. Dong, “Limits of stimulated Brillouin scattering suppression in optical fibers with transverse acoustic waveguide designs,” J. Lightwave Technol. 21, 3156–3161 (2010).
  20. L. Dong, “Formulation of a complex mode solver for arbitrary circular acoustic wave guides,” J. Lightwave Technol. 21, 3162–3175 (2010).
  21. K. J. Chen, A. Safaai-Jazi, G. W. Farnell, “Leaky modes in weakly guiding fiber acoustic waveguides,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(6), 634–643 (1986). [CrossRef] [PubMed]
  22. A. Safaai-Jazi, C. K. Jen, G. W. Farnell, “Analysis of weakly guiding fiber acoustic waveguide,” IEEE Trans. Ultrason. Ferroelectr. Freq. Control 33(1), 59–68 (1986). [CrossRef] [PubMed]
  23. P. D. Dragic, P. C. Law, Y. S. Liu, “Higher order modes in acoustically antiguiding optical fiber,” Microw. Opt. Technol. Lett. 54(10), 2347–2349 (2012). [CrossRef]
  24. Y. Jeong, B. Lee, J. Nilsson, D. J. Richardson, “A quasi-mode interpretation of radiation modes in long-period fiber gratings,” IEEE J. Quantum Electron. 39(9), 1135–1142 (2003). [CrossRef]
  25. K. Park and Y. Jeong, “A quasi-mode interpretation of acoustic radiation modes for the analysis of acoustically antiguiding optical fibers,” in Advanced Solid-State Lasers, (Optical Society of America, Paris, 2013), Paper ATu3A.08.
  26. S. Dasgupta, F. Poletti, S. Liu, P. Petropoulos, D. J. Richardson, L. Grüner-Nielsen, S. Herstrøm, “Modeling Brillouin gain spectrum of solid and microstructured optical fibers using a finite element method,” J. Lightwave Technol. 29(1), 22–30 (2011). [CrossRef]
  27. Y. R. Shen, N. Bloembergen, “Theory of stimulated Brillouin and Raman scattering,” Phys. Rev. 137(6A), A1787–A1805 (1965). [CrossRef]
  28. P. J. Thomas, N. L. Rowell, H. M. van Driel, G. I. Stegeman, “Normal acoustic modes and Brillouin scattering in single-mode optical fibers,” Phys. Rev. B 19(10), 4986–4998 (1979). [CrossRef]
  29. R. W. Boyd, Nonlinear optics, 3rd ed. (Academic Press, 2008), Chap. 9.
  30. L. Tartara, C. Codemard, J. Maran, R. Cherif, M. Zghal, “Full modal analysis of the Brillouin gain spectrum of an optical fiber,” Opt. Commun. 282(12), 2431–2436 (2009). [CrossRef]
  31. R. A. Waldron, “Some problems in the theory of guided microsonic waves,” IEEE Trans. Microw. Theory Tech. 17(11), 893–904 (1969). [CrossRef]
  32. N. Shibata, K. Okamoto, Y. Azuma, “Longitudinal acoustic modes and Brillouin-gain spectra for GeO2-doped-core single mode fibers,” J. Opt. Soc. Am. B 6(6), 1167–1174 (1989). [CrossRef]
  33. L. E. Kinsler, A. R. Frey, A. B. Coppens, and J. V. Sanders, Fundamentals of acoustics, 4th ed. (Wiley, 2010), Chap. 5.
  34. D. Marcuse, Theory of Dielectric Optical Waveguides, 2nd ed. (Academic Press, 1991), Chap. 1–2.
  35. K. F. Graff, Wave Motion in Elastic Solids (Dover Publications, 1991), Chap. 8.
  36. B. A. Auld, Acoustic Fields and Waves in Solids Volume 1 (Wiley, 1973), Chap. 5.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited