OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7972–7988

Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence

Kristina Irsch, Boris I. Gramatikov, Yi-Kai Wu, and David L. Guyton  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 7972-7988 (2014)
http://dx.doi.org/10.1364/OE.22.007972


View Full Text Article

Enhanced HTML    Acrobat PDF (11709 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present an improved method for remote eye-fixation detection, using a polarization-modulated approach to retinal birefringence scanning (RBS), without the need for individual calibration or separate background measurements and essentially independent of corneal birefringence. Polarization-modulated RBS detects polarization changes generated in modulated polarized light passing through a unique pattern of nerve fibers identifying and defining the retinal region where fixation occurs (the fovea). A proof-of-concept demonstration in human eyes suggests that polarization-modulated RBS has the potential to reliably detect true foveal fixation on a specified point with an accuracy of at least ± 0.75°, and that it can be applied to the general population, including individuals with sub-optimal eyes and young children, where early diagnosis of visual problems can be critical. As could be employed in an eye-controlled display or in other devices, polarization-modulated RBS also enables and paves the way for new and reliable eye-fixation-evoked human-machine interfaces.

© 2014 Optical Society of America

OCIS Codes
(120.4570) Instrumentation, measurement, and metrology : Optical design of instruments
(120.4820) Instrumentation, measurement, and metrology : Optical systems
(170.4460) Medical optics and biotechnology : Ophthalmic optics and devices
(170.4470) Medical optics and biotechnology : Ophthalmology
(260.1440) Physical optics : Birefringence
(260.5430) Physical optics : Polarization

ToC Category:
Instrumentation, Measurement, and Metrology

History
Original Manuscript: January 15, 2014
Revised Manuscript: March 14, 2014
Manuscript Accepted: March 16, 2014
Published: March 28, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Kristina Irsch, Boris I. Gramatikov, Yi-Kai Wu, and David L. Guyton, "Improved eye-fixation detection using polarization-modulated retinal birefringence scanning, immune to corneal birefringence," Opt. Express 22, 7972-7988 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-7972


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. T. Duchowski, “A breadth-first survey of eye-tracking applications,” Behav. Res. Methods Instrum. Comput. 34(4), 455–470 (2002). [CrossRef] [PubMed]
  2. L. R. Young, D. Sheena, “Survey of eye movement recording methods,” Behav. Res. Meth. Instrum. 7(5), 397–429 (1975). [CrossRef]
  3. A. T. Duchowski, Eye Tracking Methodology: Theory and Practice, 2nd ed. (Springer, 2007).
  4. C. H. Moriomto, M. R. M. Mimica, “Eye gaze tracking techniques for interactive applications,” Comput. Vis. Image Underst. 98(1), 4–24 (2005). [CrossRef]
  5. D. H. Yoo, J. H. Kim, B. R. Lee, M. J. Chung, “Non-contact eye gaze tracking system by mapping of corneal reflections,” in Proc. Internat. Conf. on Automatic Face and Gesture Recognition (2002), pp. 94–99.
  6. D. H. Yoo, M. J. Chung, “A novel non-intrusive eye gaze estimation using cross-ratio under large head motion,” Comput. Vis. Image Underst. 98(1), 25–51 (2005). [CrossRef]
  7. D. Beymer, M. Flickner, “Eye gaze tracking using an active stereo head,” in Proc. IEEE Conference on Computer Vision and Pattern Recognition (2003), pp. 451–458. [CrossRef]
  8. S. Shih, J. Liu, “A novel approach to 3D gaze tracking using stereo cameras,” IEEE Trans. Syst. Man Cybern. (Part B3), 1–12 (2003).
  9. F. Møller, A. K. Sjølie, T. Bek, “Quantitative assessment of fixational eye movements by scanning laser ophthalmoscopy,” Acta Ophthalmol. Scand. 74(6), 578–583 (1996). [CrossRef] [PubMed]
  10. D. X. Hammer, R. D. Ferguson, J. C. Magill, M. A. White, A. E. Elsner, R. H. Webb, “Compact scanning laser ophthalmoscope with high-speed retinal tracker,” Appl. Opt. 42(22), 4621–4632 (2003). [CrossRef] [PubMed]
  11. C. K. Sheehy, Q. Yang, D. W. Arathorn, P. Tiruveedhula, J. F. de Boer, A. Roorda, “High-speed, image-based eye tracking with a scanning laser ophthalmoscope,” Biomed. Opt. Express 3(10), 2611–2622 (2012). [CrossRef] [PubMed]
  12. Tobii Technology AB, Danderyd, Sweden. www.tobii.se (2013).
  13. SensoMotoric Instruments GmbH (SMI), Teltow, Germany. www.smi.de (2013).
  14. Applied Science Laboratories, Bedford, MA. http://www.cis.rit.edu/people/faculty/pelz/research/manuals/asl_504_manual.pdf
  15. S. K. Schnipke, M. W. Todd, “Trials and tribulations of using an eye-tracking system,” in Proc. ACM SIGCHI – Human Factors in Computing Systems Conference (2000), pp. 273–274. [CrossRef]
  16. D. L. Guyton, D. G. Hunter, S. N. Patel, J. C. Sandruck, and R. L. Fry, “Eye fixation monitor and tracker,” U.S. Patent No. 6,027,216 (2000).
  17. D. G. Hunter, S. N. Patel, D. L. Guyton, “Automated detection of foveal fixation by use of retinal birefringence scanning,” Appl. Opt. 38(7), 1273–1279 (1999). [CrossRef] [PubMed]
  18. B. I. Gramatikov, “Detecting fixation on a target using time-frequency distributions of a retinal birefringence scanning signal,” Biomed. Eng. Online 12(1), 41 (2013). [CrossRef] [PubMed]
  19. B. I. Gramatikov, O. H. Y. Zalloum, Y. K. Wu, D. G. Hunter, D. L. Guyton, “Birefringence-based eye fixation monitor with no moving parts,” J. Biomed. Opt. 11(3), 034025 (2006). [CrossRef] [PubMed]
  20. B. I. Gramatikov, O. H. Y. Zalloum, Y. K. Wu, D. G. Hunter, D. L. Guyton, “Directional eye fixation sensor using birefringence-based foveal detection,” Appl. Opt. 46(10), 1809–1818 (2007). [CrossRef] [PubMed]
  21. B. Gramatikov, K. Irsch, M. Müllenbroich, N. Frindt, Y. Qu, R. Gutmark, Y. K. Wu, D. Guyton, “A device for continuous monitoring of true central fixation based on foveal birefringence,” Ann. Biomed. Eng. 41(9), 1968–1978 (2013). [CrossRef] [PubMed]
  22. D. G. Hunter, A. S. Shah, S. Sau, D. Nassif, D. L. Guyton, “Automated detection of ocular alignment with binocular retinal birefringence scanning,” Appl. Opt. 42(16), 3047–3053 (2003). [CrossRef] [PubMed]
  23. D. G. Hunter, D. S. Nassif, N. V. Piskun, R. Winsor, B. I. Gramatikov, D. L. Guyton, “Pediatric Vision Screener 1: Instrument design and operation,” J. Biomed. Opt. 9(6), 1363–1368 (2004). [CrossRef] [PubMed]
  24. D. S. Nassif, N. V. Piskun, B. I. Gramatikov, D. L. Guyton, D. G. Hunter, “Pediatric Vision Screener 2: Pilot study in adults,” J. Biomed. Opt. 9(6), 1369–1374 (2004). [CrossRef] [PubMed]
  25. D. S. Nassif, N. V. Piskun, D. G. Hunter, “The Pediatric Vision Screener III: Detection of Strabismus in Children,” Arch. Ophthalmol. 124(4), 509–513 (2006). [CrossRef] [PubMed]
  26. S. E. Loudon, C. A. Rook, D. S. Nassif, N. V. Piskun, D. G. Hunter, “Rapid, high-accuracy detection of strabismus and amblyopia using the pediatric vision scanner,” Invest. Ophthalmol. Vis. Sci. 52(8), 5043–5048 (2011). [CrossRef] [PubMed]
  27. R. W. Knighton, X. R. Huang, “Linear birefringence of the central human cornea,” Invest. Ophthalmol. Vis. Sci. 43(1), 82–86 (2002). [PubMed]
  28. R. N. Weinreb, C. Bowd, D. S. Greenfield, L. M. Zangwill, “Measurement of the magnitude and axis of corneal polarization with scanning laser polarimetry,” Arch. Ophthalmol. 120(7), 901–906 (2002). [CrossRef] [PubMed]
  29. K. Irsch, A. A. Shah, “Birefringence of the central cornea in children assessed with scanning laser polarimetry,” J. Biomed. Opt. 17(8), 086001 (2012). [CrossRef] [PubMed]
  30. G. F. J. Garlick, G. A. Steigmann, and W. E. Lamb, “Differential optical polarization detectors,” U.S. Patent No. 3,992,571 (1976).
  31. J. M. Miller, H. L. Hall, J. E. Greivenkamp, D. L. Guyton, “Quantification of the Brückner Test for Strabismus,” Invest. Ophthalmol. Vis. Sci. 36, 897–905 (1995). [PubMed]
  32. K. Irsch, B. Gramatikov, Y.-K. Wu, D. L. Guyton, “Modeling and minimizing interference from corneal birefringence in retinal birefringence scanning for foveal fixation detection,” Biomed. Opt. Express 2(7), 1955–1968 (2011). [CrossRef] [PubMed]
  33. A. W. Dreher, K. Reiter, R. N. Weinreb, “Spatially resolved birefringence of the retinal nerve fiber layer assessed with a retinal laser ellipsometer,” Appl. Opt. 31(19), 3730–3735 (1992). [CrossRef] [PubMed]
  34. D. G. Hunter, J. C. Sandruck, S. Sau, S. N. Patel, D. L. Guyton, “Mathematical modeling of retinal birefringence scanning,” J. Opt. Soc. Am. A 16(9), 2103–2111 (1999). [CrossRef] [PubMed]
  35. H. B. Klein Brink, G. J. Van Blokland, “Birefringence of the human fovea area assessed in vivo with Mueller matrix ellipsometry,” J. Opt. Soc. Am. A 5, 49–57 (1988).
  36. B. C. E. Pelz, C. Weschenmoser, S. Goelz, J. P. Fischer, R. O. W. Burk, J. F. Bille, “In vivo measurement of the retinal birefringence with regard on corneal effects using an electro-optical ellipsometer,” Proc. SPIE 2930, 92–101 (1996). [CrossRef]
  37. D. L. Sliney and M. Wolbarsht, Safety with Lasers and Other Optical Sources (Plenum Press, 1980), pp. 261–271.
  38. Q. Zhou, R. N. Weinreb, “Individualized compensation of anterior segment birefringence during scanning laser polarimetry,” Invest. Ophthalmol. Vis. Sci. 43(7), 2221–2228 (2002). [PubMed]
  39. Q. Zhou, “System and method for determining birefringence of anterior segment of the patient's eye,” U.S. Patent No. 6,356,036 (2002).
  40. D. G. Hunter, K. J. Nusz, N. K. Gandhi, I. H. Quraishi, B. I. Gramatikov, D. L. Guyton, “Automated detection of ocular focus,” J. Biomed. Opt. 9(5), 1103–1109 (2004). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited