OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 7989–8000

Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography

C. K. Hagen, P. C. Diemoz, M. Endrizzi, L. Rigon, D. Dreossi, F. Arfelli, F. C. M. Lopez, R. Longo, and A. Olivo  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 7989-8000 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2211 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



X-ray phase contrast imaging (XPCi) methods are sensitive to phase in addition to attenuation effects and, therefore, can achieve improved image contrast for weakly attenuating materials, such as often encountered in biomedical applications. Several XPCi methods exist, most of which have already been implemented in computed tomographic (CT) modality, thus allowing volumetric imaging. The Edge Illumination (EI) XPCi method had, until now, not been implemented as a CT modality. This article provides indications that quantitative 3D maps of an object’s phase and attenuation can be reconstructed from EI XPCi measurements. Moreover, a theory for the reconstruction of combined phase and attenuation maps is presented. Both reconstruction strategies find applications in tissue characterisation and the identification of faint, weakly attenuating details. Experimental results for wires of known materials and for a biological object validate the theory and confirm the superiority of the phase over conventional, attenuation-based image contrast.

© 2014 Optical Society of America

OCIS Codes
(110.6960) Imaging systems : Tomography
(340.6720) X-ray optics : Synchrotron radiation
(340.7440) X-ray optics : X-ray imaging

ToC Category:
X-ray Optics

Original Manuscript: January 16, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 17, 2014
Published: March 28, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

C. K. Hagen, P. C. Diemoz, M. Endrizzi, L. Rigon, D. Dreossi, F. Arfelli, F. C. M. Lopez, R. Longo, and A. Olivo, "Theory and preliminary experimental verification of quantitative edge illumination x-ray phase contrast tomography," Opt. Express 22, 7989-8000 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Lewis, C. Hall, A. Hufton, S. Evans, R. Menk, F. Arfelli, L. Rigon, G. Tromba, D. Dance, I. Ellis, A. Evans, E. Jacobs, S. Pinder, K. Rogers, “X-ray refraction effects: application to the imaging of biological tissues,” The British J. Radiol. 75, 301–308 (2003). [CrossRef]
  2. A. Momose, J. Fukuda, “Phase-contrast radiographs of nonstained rat cerebellar specimen,” Medical Physics 22(4),375–379 (1995). [CrossRef] [PubMed]
  3. A. Snigirev, I. Snigireva, V. Krohn, S. Kuznetsov, I. Schelokov, “On the possibilities of x-ray phase contrast microimaging by coherent high energy synchrotron radiation,” Rev. Sci. Instrum. 66, 5486–5492 (1995). [CrossRef]
  4. D. Chapman, W. Thomlinson, R.E. Johnston, D. Washburn, E. Pisano, N. Gmur, Z. Zhong, R. Menk, F. Arfelli, D. Sayers, “Diffraction enhanced x-ray imaging,” Phys. Med. Biol. 42, 2015–2025 (1997). [CrossRef] [PubMed]
  5. F. Pfeiffer, T. Weitkamp, O. Bunk, C. David, “Phase retrieval and differential phase contrast imaging with low-brilliance x-ray sources,” Nat. Phys. 2, 258–261 (2006). [CrossRef]
  6. A. Olivo, R. Speller, “A coded-aperture technique allowing x-ray phase contrast imaging with conventional sources,” Appl. Phys. Lett. 91,074106 (2007). [CrossRef]
  7. A. Momose, T. Takeda, Y. Itai, K. Hirano, “Phase-contrast x-ray computed tomography for observing biological soft tissues,” Nature Medicine 2(4),473–475 (1996). [CrossRef] [PubMed]
  8. P. Cloetens, R. Barrett, J. Baruchel, J. Guigay, M. Schlenker, “Phase objects in synchrotron radiation hard x-ray imaging,” J. Phys. D: Appl. Phys. 29, 133–146 (1996). [CrossRef]
  9. F. Dilmanian, Z. Zhong, B. Ren, X. Wu, L. Chapman, I. Orion, W. Thomlinson, “Computed tomography of x-ray index of refraction using the diffraction enhanced imaging method,” Phys. Med. Biol. 45, 933–946 (2000). [CrossRef] [PubMed]
  10. T. Weitkamp, A. Diaz, C. David, F. Pfeiffer, M. Stampanoni, P. Cloetens, E. Ziegler, “X-ray phase imaging with a grating interferometer,” Opt. Express 13, 6296–6304 (2005). [CrossRef] [PubMed]
  11. A. Olivo, F. Arfelli, G. Cantatore, R. Longo, R. Menk, S. Pani, M. Prest, P. Poporat, L. Rigon, G. Tromba, E. Vallazza, E. Castelli, “An innovative digital imaging set-up allowing a low-dose approach to phase contrast applications in the medical field,” Med. Phys. 28(8),1610–1619 (2001). [CrossRef] [PubMed]
  12. T.P. Millard, M. Endrizzi, K. Ignatyev, C.K. Hagen, P.R.T. Munro, R. Speller, A. Olivo, “Method for the automatization of the alignment of a laboratory based x-ray phase contrast edge illumination system,” Rev. Sci. Instrum. 84,083702 (2013). [CrossRef]
  13. P.C. Diemoz, M. Endrizzi, C.E. Zapata, Z. Pesic, C. Rau, A. Bravin, I. Robinson, A. Olivo, “X-ray phase contrast imaging with nanoradian angular resolution,” Phys. Rev. Lett. 110,138105 (2013). [CrossRef]
  14. P.C. Diemoz, C.K. Hagen, M. Endrizzi, A. Olivo, “Sensitivity of laboratory based implementations of edge illumination x-ray phase-contrast imaging,” Appl. Phys. Lett. 103,244104 (2013). [CrossRef]
  15. A. Olivo, S. Gkoumas, M. Endrizzi, C.K. Hagen, M.B. Szafraniec, P.C. Diemoz, P.R.T. Munro, K. Ignatyev, B. Johnson, J.A. Horrocks, S.J. Vinnicombe, J.L. Jones, R.D. Speller, “Low-dose phase contrast mammography with conventional sources,” Med. Phys. 40(9), 090701 (2013). [CrossRef] [PubMed]
  16. J. Herzen, T. Donath, F. Pfeiffer, O. Bunk, C. Padeste, F. Beckmann, A. Schreyer, C. David, “Quantitative phase-contrast tomography of a liquid phantom using a conventional x-ray tube source,” Opt. Express 17(2), 10010 (2009). [CrossRef] [PubMed]
  17. P.C. Diemoz, P. Coan, I. Zanette, A. Bravin, S. Lang, C. Glaser, T. Weitkamp, “A simplified approach for computed tomography with an x-ray grating interferometer,” Opt. Express 19(3),1691–1698 (2011). [CrossRef] [PubMed]
  18. A.C. Kak, M. Slaney, “Principles of computerized tomographic imaging,” IEEE Press (1988).
  19. G. Tromba, R. Longo, A. Abrami, F. Arfelli, A. Astolfo, P. Bregant, F. Brun, K. Casarin, V. Chenda, D. Dreossi, M. Hola, J. Kaiser, L. Manchini, R. Menk, E. Quai, E. Quaia, L. Rigon, T. Rokvic, N. Sodini, D. Sanabor, E. Schultke, M. Tonutti, A. Vascotto, F. Zanconati, M. Cova, E. Castelli, “The SYRMEP beamline of Elettra: clinical mammography and biomedical applications,” AIP Conference Proceedings 1266, 18–23 (2010). [CrossRef]
  20. P.R.T. Munro, C.K. Hagen, M.B. Szafraniec, A. Olivo, “A simplified approach to quantitative coded aperture x-ray phase imaging,” Opt. Express 21(9),11187–11201 (2013). [CrossRef] [PubMed]
  21. L. Rigon, F. Arfelli, A. Astolfo, A. Bergamaschi, D. Dreossi, R. Longo, R.H. Menk, B. Schmitt, E. Valazza, E. Castelli, “A single-photon counting “edge-on” silicon detector for synchrotron radiation mammography,” Nuclear Instruments and Methods in Physics Research Section A 608(1),S62–S65 (2009). [CrossRef]
  22. F.C. Lopez, L. Rigon, R. Longo, F. Arfelli, A. Bergamaschi, R.C. Chen, D. Dreossi, B. Schmitt, E. Valazza, E. Castelli, “Development of a fast read-out system of a single photon counting detector for mammography with synchrotron radiation,” JINST 6, C12031 (2011). [CrossRef]
  23. A. Mozzanica, A. Bergamaschi, R. Dinapoli, F. Gozzo, B. Henrich, P. Kraft, B. Patterson, B. Schmitt, “MythenII: a 128 channel single photon counting readout chip,” Nuclear Instruments and Methods in Physics Research Section A 607(1),250–252 (2009). [CrossRef]
  24. B.L. Henke, E.M. Gullikson, J.C. Davis, “X-ray interactions: photoabsorption, scattering, transmission and reflection at E = 50–30000 eV, Z = 1–92,” Atomic Data and Nuclear Data Tables 54, 181–342 (1993). [CrossRef]
  25. T. Thuering, P. Modregger, B.R. Pinzer, Z. Wang, M. Stampanoni, “Non-linear regularized phase retrieval for unidirectional x-ray differential phase contrast radiography,” Opt. Express 19(25),25545–25558 (2011). [CrossRef]
  26. P.R.T. Munro, L. Rigon, K. Ignatyev, F.C.M. Lopez, D. Dreossi, R.D. Speller, A. Olivo, “A quantitative, non-interferometric x-ray phase contrast imaging technique,” Opt. Express 21(1),647–661 (2013) [CrossRef] [PubMed]
  27. F.A. Vittoria, P.C. Diemoz, M. Endrizzi, L. Rigon, F.C. Lopez, D. Dreossi, P.R.T. Munro, A. Olivo, “Strategies for efficient and fast wave optics simulation of coded-aperture and other x-ray phase-contrast imaging methods,” Appl. Opt. 52(28),6940–6947 (2013). [PubMed]
  28. Diemoz et al., manuscript submitted.
  29. T. Saam, J. Herzen, H. Hetterich, S. Fill, M. Willner, M. Stockmar, K. Achterhold, I. Zanette, T. Weitkamp, U. Schueller, S. Auweter, S. Adam-Neumair, K. Nikolaou, M. Reiser, F. Pfeiffer, F. Bamberg, “Translation of atherosclerotic plaque phase-contrast CT imaging from synchrotron radiation to a conventional lab-based x-ray source,” PLOS ONE 8(9),e73513 (2013). [CrossRef] [PubMed]
  30. R.E. Guldberg, A.S.P. Lin, R. Coleman, G. Robertson, C. Duvall, “Microcomputed tomography imaging of skeleteral development and growth,” Birth Defects Research C 72, 250–259 (2004). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited