OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8024–8034

Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging

Xiaojin Zhao, Xiaofang Pan, Xiaolei Fan, Ping Xu, Amine Bermak, and Vladimir G. Chigrinov  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8024-8034 (2014)
http://dx.doi.org/10.1364/OE.22.008024


View Full Text Article

Enhanced HTML    Acrobat PDF (2537 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

In this paper, we present a liquid-crystal-polymer (LCP)-based dual-layer micro-quarter-wave-retarder (MQWR) array for active polarization image sensors. The proposed MQWRs, for the first time, enable the extraction of the incident light’s circularly polarized components in the whole visible regime, which correspond to the fourth parameter of Stokes vector. Compared with the previous implementations, our proposed MQWRs feature high achromaticity, making their applications no longer limited to monochromatic illumination. In addition, the presented thin structure exhibits an overall thickness of 2.43μm, leading to greatly alleviated optical cross-talk between adjacent photo-sensing pixels. Moreover, the reported superior optical performance (e.g. minor transmittance, extinction ratio) validates our optical design and optimization of the proposed MQWRs. Furthermore, the demonstrated simple fabrication recipe offers a cost-effective solution for the monolithic integration between the proposed MQWR array and the commercial solid-state image sensors, which makes the multi-spectral full Stokes polarization imaging system on a single chip feasible.

© 2014 Optical Society of America

OCIS Codes
(120.5410) Instrumentation, measurement, and metrology : Polarimetry
(230.3720) Optical devices : Liquid-crystal devices
(230.5440) Optical devices : Polarization-selective devices
(110.5405) Imaging systems : Polarimetric imaging

ToC Category:
Optical Devices

History
Original Manuscript: February 6, 2014
Revised Manuscript: March 19, 2014
Manuscript Accepted: March 19, 2014
Published: March 28, 2014

Citation
Xiaojin Zhao, Xiaofang Pan, Xiaolei Fan, Ping Xu, Amine Bermak, and Vladimir G. Chigrinov, "Patterned dual-layer achromatic micro-quarter-wave-retarder array for active polarization imaging," Opt. Express 22, 8024-8034 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8024


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. A. G. Andreou, Z. K. Kalayjian, “Polarization imaging: principles and integrated polarimeters,” IEEE Sens. J. 2, 566–576 (2002). [CrossRef]
  2. J. S. Tyo, D. L. Goldstein, D. B. Chenault, J. A. Shaw, “Review of passive imaging polarimetry for remote sensing applications,” Appl. Opt. 45, 5453–5469 (2006). [CrossRef] [PubMed]
  3. J. Guo, D. Brady, “Fabrication of thin-film micropolarizer arrays for visible imaging polarimetry,” Appl. Opt. 39, 1486–1492 (2000). [CrossRef]
  4. C. K. Harnett, H. G. Craighead, “Liquid-crystal micropolarizer array for polarization-difference imaging,” Appl. Opt. 41, 1291–1296 (2002). [CrossRef] [PubMed]
  5. M. Momeni, A. H. Titus, “An analog VLSI chip emulating polarization vision of octopus retina,” IEEE Trans. Neur. Netw. 7, 222–232 (2006). [CrossRef]
  6. V. Gruev, A. Ortu, N. Lazarus, Jan Van der Spiegel, N. Engheta, “Fabrication of a dual-tier thin film micropolarization array,” Opt. Express 15, 4994–5007 (2007). [CrossRef] [PubMed]
  7. R. Harding, I. Gardiner, H. J. Yoon, T. Perrett, O. Parri, K. Skjonnemand, “Reactive liquid crystal materials for optically anisotropic patterned retarders,” Proc. SPIE 7140, 71402J (2008). [CrossRef]
  8. X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “Thin photo-patterned micropolarizer array for CMOS image sensors,” IEEE Photon. Technol. Lett. 21, 805–807 (2009). [CrossRef]
  9. V. Gruev, R. Perkins, T. York, “CCD polarization imaging sensor with aluminum nanowire optical filters,” Opt. Express 18, 19087–19094 (2010). [CrossRef] [PubMed]
  10. V. Gruev, Jan Van der Spiegel, N. Engheta, “Dual-tier thin film polymer polarization imaging sensor,” Opt. Express 18, 19292–19303 (2010). [CrossRef] [PubMed]
  11. X. Zhao, A. Bermak, F. Boussaid, V. G. Chigrinov, “Liquid-crystal micropolarimeter array for full Stokes polarization imaging in visible spectrum,” Opt. Express 18, 17776–17787 (2010). [CrossRef] [PubMed]
  12. V. Gruev, “Fabrication of a dual-layer aluminum nanowires polarization filter array,” Opt. Express 19, 24361–24369 (2011). [CrossRef] [PubMed]
  13. X. Zhao, F. Boussaid, A. Bermak, V. G. Chigrinov, “High-resolution thin ’guest-host’ micropolarizer arrays for visible imaging polarimetry,” Opt. Express 19, 5565–5573 (2011). [CrossRef] [PubMed]
  14. G. Myhre, W. Hsu, A. Peinado, C. LaCasse, N. Brock, R. A. Chipman, S. Pau, “Liquid crystal polymer full-stokes division of focal plane polarimeter,” Opt. Express 20, 27393–27409 (2012). [CrossRef] [PubMed]
  15. K. Sasagawa, S. Shishido, K. Ando, H. Matsuoka, T. Noda, T. Tokuda, K. Kakiuchi, J. Ohta, “Image sensor pixel with on-chip high extinction ratio polarizer based on 65-nm standard CMOS technology,” Opt. Express 21, 11132–11140 (2013). [CrossRef] [PubMed]
  16. W. Hsu, J. Ma, G. Myhre, K. Balakrishnan, S. Pau, “Patterned cholesteric liquid crystal polymer film,” J. Opt. Soc. Am. A 30, 252–258 (2013). [CrossRef]
  17. T. H. Chiou, S. Kleinlogel, T. Cronin, R. Caldwell, B. Loeffler, A. Siddiqi, A. Goldizen, J. Marshall, “Circular polarization vision in a stomatopod crustacean,” Curr. Biol. 18, 429–434 (2008). [CrossRef] [PubMed]
  18. N. W. Roberts, T. H. Chiou, N. J. Marshall, T. W. Cronin, “A biological quarter-wave retarder with excellent achromaticity in the visible wavelength region,” Nat. Photonics 3, 641–644 (2009). [CrossRef]
  19. G. C. Giakos, “Multifusion, Multispectral, Optical Polarimetric Imaging Sensing Principles,” IEEE Trans. Instrum. Meas. 55, 1628–1633 (2006). [CrossRef]
  20. D. Goldstein, Polarized Light (Marcel Dekker, 2003). [CrossRef]
  21. M. Kulkarni, V. Gruev, “Integrated spectral-polarization imaging sensor with aluminum nanowire polarization filters,” Opt. Express 20, 22997–23012 (2012). [CrossRef] [PubMed]
  22. W. S. Kang, B. J. Mun, G. D. Lee, J. H. Lee, B. K. Kim, H. C. Choi, Y. J. Lim, S. H. Lee, “Optimal design of quarter-wave plate with wideband and wide viewing angle for three-dimensional liquid crystal display,” J. Appl. Phys. 111, 103119 (2012). [CrossRef]
  23. S. T. Wu, “Birefringence dispersions of liquid crystals,” Phys. Rev. A 33, 1270–1274 (1986). [CrossRef] [PubMed]
  24. P. Hariharan, P. E. Ciddor, “Broad-band superachromatic retarders and circular polarizers for the UV, visible and near infrared,” J. Mod. Opt. 51, 2315–2322 (2004). [CrossRef]
  25. X. Zhao, A. Bermak, F. Boussaid, T. Du, V. G. Chigrinov, “High-resolution photo-aligned liquid-crystal micropolarizer array for polarization imaging in visible spectrum,” Opt. Lett. 34, 3619–3621 (2009). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited