OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8041–8046

Color schlieren imaging with a two-path, double knife edge system

Jan L. Chaloupka, Maurice Woods, III, Jacob Aas, Jessamyn Hutchins, and Jonathan D. Thistle  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8041-8046 (2014)
http://dx.doi.org/10.1364/OE.22.008041


View Full Text Article

Enhanced HTML    Acrobat PDF (5524 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The traditional arrangement for visualizing optical phenomena with the schlieren technique is modified to include a Mach-Zehnder geometry. This allows for the implementation of two independent knife edges along two different beam paths, resulting in an enhanced combined image that is uniquely adjustable. Post-processed combined images are also generated by spatially separating the paths from each arm and then colorizing and combining the images into a single composite. In this way, bidirectional, color schlieren images have been produced using both white-light and monochromatic sources.

© 2014 Optical Society of America

OCIS Codes
(120.0120) Instrumentation, measurement, and metrology : Instrumentation, measurement, and metrology
(120.4640) Instrumentation, measurement, and metrology : Optical instruments
(220.4840) Optical design and fabrication : Testing

ToC Category:
Imaging Systems

History
Original Manuscript: February 28, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 21, 2014
Published: March 28, 2014

Citation
Jan L. Chaloupka, Maurice Woods, Jacob Aas, Jessamyn Hutchins, and Jonathan D. Thistle, "Color schlieren imaging with a two-path, double knife edge system," Opt. Express 22, 8041-8046 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8041


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. S. Settles, Schlieren and Shadowgraph Techniques (Springer, 2001).
  2. G. S. Settles, “Important developments in schlieren and shadowgraph visualization during the last decade,” in Proceedings of the 14th International Symposium on Flow Visualization (2010), paper 267.
  3. L. Martí-López, R. Ocaña, J. A. Porro, M. Morales, J. L. Ocaña, “Optical observation of shock waves and cavitation bubbles in high intensity laser-induced shock processes,” Appl. Opt. 48(19), 3671–3680 (2009). [CrossRef] [PubMed]
  4. A. Vogel, I. Apitz, S. Freidank, R. Dijkink, “Sensitive high-resolution white-light Schlieren technique with a large dynamic range for the investigation of ablation dynamics,” Opt. Lett. 31(12), 1812–1814 (2006). [CrossRef] [PubMed]
  5. A. Ben-Yakar, R. K. Hanson, “Ultra-fast-framing schlieren system for studies of the time evolution of jets in supersonic crossflows,” Exp. Fluids 32(6), 652–666 (2002). [CrossRef]
  6. S. A. Kaiser, V. M. Salazar, A. A. Hoops, “Schlieren measurements in the round cylinder of an optically accessible internal combustion engine,” Appl. Opt. 52(14), 3433–3443 (2013). [CrossRef] [PubMed]
  7. Q. Wang, H. W. Huang, Y. Zhang, C. Zhao, “Impinging flame ignition and propagation visualisation using Schlieren and colour-enhanced stereo imaging techniques,” Fuel 108, 177–183 (2013). [CrossRef]
  8. D. M. Friday, P. B. Broughton, T. A. Lee, G. A. Schutz, J. N. Betz, C. M. Lindsay, “Further insight into the nature of ball-lightning-like atmospheric pressure plasmoids,” J. Phys. Chem. A 117(39), 9931–9940 (2013). [CrossRef] [PubMed]
  9. I. Zergioti, A. Karaiskou, D. G. Papazoglou, C. Fotakis, M. Kapsetaki, D. Kafetzopoulos, “Time resolved schlieren study of sub-pecosecond and nanosecond laser transfer of biomaterials,” Appl. Surf. Sci. 247(1–4), 584–589 (2005). [CrossRef]
  10. M. J. Hargather, G. S. Settles, “Retroreflective shadowgraph technique for large-scale flow visualization,” Appl. Opt. 48(22), 4449–4457 (2009). [CrossRef] [PubMed]
  11. M. J. Hargather, “Background-oriented schlieren diagnostics for large-scale explosive testing,” Shock Waves 23(5), 529–536 (2013). [CrossRef]
  12. G. S. Settles, “A direction-indicating color schlieren system,” AIAA J. 8(12), 2282–2284 (1970). [CrossRef]
  13. W. L. Howes, “Rainbow schlieren and its applications,” Appl. Opt. 23(14), 2449–2460 (1984). [CrossRef] [PubMed]
  14. G. E. Elsinga, B. W. van Oudheusden, F. Scarano, D. W. Watt, “Assessment and application of quantitative schlieren methods: Calibrated color schlieren and background oriented schlieren,” Exp. Fluids 36(2), 309–325 (2004). [CrossRef]
  15. H. Kleine, K. Hiraki, H. Maruyama, T. Hayashida, J. Yonai, K. Kitamura, Y. Kondo, T. G. Etoh, “High-speed time-resolved color schlieren visualization of shock wave phenomena,” Shock Waves 14(5–6), 333–341 (2005). [CrossRef]
  16. H. Kleine, H. Gronig, K. Takayama, “Simultaneous shadow, schlieren and interferometric visualization of compressible flows,” Opt. Lasers Eng. 44(3-4), 170–189 (2006). [CrossRef]
  17. J. Stricker, B. Zakharin, B. T. Hornick, F. Rosenblatt, “Bidirectional quantitative color schlieren,” Opt. Eng. 45(12), 123604 (2006). [CrossRef]
  18. D. A. Feikema, “Quantitative rainbow schlieren deflectometry as a temperature diagnostic for nonsooting spherical flames,” Appl. Opt. 45(20), 4826–4832 (2006). [CrossRef] [PubMed]
  19. M. J. Hargather, G. S. Settles, “A comparison of three quantitative schlieren techniques,” Opt. Lasers Eng. 50(1), 8–17 (2012). [CrossRef]
  20. C. C. Ting, C. C. Chen, “Detection of gas leakage using microcolor schlieren technique,” Measurement 46(8), 2467–2472 (2013). [CrossRef]
  21. H. Kleine, “Schlieren imaging and the real world,” J. Vis. 16(3), 193–199 (2013).
  22. F. W. Barry, G. M. Edelman, “An improved schlieren apparatus,” J. Aeronaut. Sci. 15(6), 364–365 (1948).
  23. R. B. Owen and W. K. Witherow, “Dual laser optical system and method for studying fluid flow,” United States Patent #4,391,518 (1983).
  24. G. Rudinger, L. M. Somers, “A simple schlieren system for two simultaneous views of a gas flow,” J SMPTE 66(10), 622 (1957). [CrossRef]
  25. V. V. Golub, A. I. Kharitonov, I. L. Sharov, and A. M. Shulmeister, “Two-direction visualization of vortex rings emerging in the course of formation of the supersonic jet,” in Flow Visualization V:Proceedings of the Fifth International Symposium, R. Reznicek, ed. (Taylor and Francis, 1990), pp. 556–561.

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited