OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8076–8084

Temporal imaging using a time pinhole

Zhao Wu, Jianji Dong, Jie Hou, Siqi Yan, Yu Yu, and Xinliang Zhang  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8076-8084 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1236 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We experimentally demonstrate a temporal imaging system based on a time pinhole. In accordance with the spatial pinhole-imaging counterpart, it consists of two sections of dispersion fibers connected by a temporal shutter, which is experimentally realized by a logic AND-gate with a short pulse. Both theoretical analysis and experimental results show that the output waveform is the scaled and broadened profile of the input waveform. Specifically, the output waveform is reversed if the signs of the dispersion on both sides of the time-gate are identical, otherwise it is non-reversed if the signs of the dispersion are opposite. Furthermore, we adjust the duration of the temporal shutter by changing the spectral width of the pulse, and investigate the effect of the shutter time on the performance of the output waveform.

© 2014 Optical Society of America

OCIS Codes
(050.1970) Diffraction and gratings : Diffractive optics
(060.2310) Fiber optics and optical communications : Fiber optics
(070.0070) Fourier optics and signal processing : Fourier optics and signal processing

ToC Category:
Fourier Optics and Signal Processing

Original Manuscript: September 4, 2013
Revised Manuscript: November 20, 2013
Manuscript Accepted: November 24, 2013
Published: March 31, 2014

Zhao Wu, Jianji Dong, Jie Hou, Siqi Yan, Yu Yu, and Xinliang Zhang, "Temporal imaging using a time pinhole," Opt. Express 22, 8076-8084 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. R. Salem, M. A. Foster, A. L. Gaeta, “Application of space-time duality to ultrahigh-speed optical signal processing,” Adv. Opt. Photon. 5(3), 274–317 (2013). [CrossRef]
  2. B. H. Kolner, “Space-time duality and the theory of temporal imaging,” IEEE J. Quantum Electron. 30(8), 1951–1963 (1994). [CrossRef]
  3. C. V. Bennett, B. H. Kolner, “Principles of parametric temporal imaging - Part I: System configurations,” IEEE J. Quantum Electron. 36(4), 430–437 (2000). [CrossRef]
  4. C. V. Bennett, B. H. Kolner, “Principles of parametric temporal imaging - Part II: System performance,” IEEE J. Quantum Electron. 36(6), 649–655 (2000). [CrossRef]
  5. J. Howe, C. Xu, “Ultrafast Optical Signal Processing Based Upon Space-Time Dualities,” J. Lightwave Technol. 24(7), 2649–2662 (2006). [CrossRef]
  6. R. Salem, M. A. Foster, A. C. Turner-Foster, D. F. Geraghty, M. Lipson, A. L. Gaeta, “High-speed optical sampling using a silicon-chip temporal magnifier,” Opt. Express 17(6), 4324–4329 (2009). [CrossRef] [PubMed]
  7. O. Kuzucu, Y. Okawachi, R. Salem, M. A. Foster, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Spectral phase conjugation via temporal imaging,” Opt. Express 17(22), 20605–20614 (2009). [CrossRef] [PubMed]
  8. Y. Okawachi, R. Salem, A. R. Johnson, K. Saha, J. S. Levy, M. Lipson, A. L. Gaeta, “Asynchronous single-shot characterization of high-repetition-rate ultrafast waveforms using a time-lens-based temporal magnifier,” Opt. Lett. 37(23), 4892–4894 (2012). [CrossRef] [PubMed]
  9. B. H. Kolner, M. Nazarathy, “Temporal imaging with a time lens,” Opt. Lett. 14(12), 630–632 (1989). [CrossRef] [PubMed]
  10. M. A. Foster, R. Salem, Y. Okawachi, A. C. Turner-Foster, M. Lipson, A. L. Gaeta, “Ultrafast waveform compression using a time-domain telescope,” Nat. Photonics 3(10), 581–585 (2009). [CrossRef]
  11. R. Salem, M. A. Foster, A. C. Turner, D. F. Geraghty, M. Lipson, A. L. Gaeta, “Optical time lens based on four-wave mixing on a silicon chip,” Opt. Lett. 33(10), 1047–1049 (2008). [CrossRef] [PubMed]
  12. E. Palushani, H. C. H. Mulvad, M. Galili, H. Hu, L. K. Oxenlowe, A. T. Clausen, P. Jeppesen, “OTDM-to-WDM Conversion Based on Time-to-Frequency Mapping by Time-Domain Optical Fourier Transformation,” IEEE J. Sel. Top. Quantum Electron. 18, 681–688 (2012).
  13. K. G. Petrillo, M. A. Foster, “Full 160-Gb/s OTDM to 16x10-Gb/s WDM conversion with a single nonlinear interaction,” Opt. Express 21(1), 508–518 (2013). [CrossRef] [PubMed]
  14. C. Zhang, X. Wang, X. Xu, P. C. Chui, and K. K. Y. Wong, “Simultaneous Demultiplexing of OTDM Channels Based on Swept-Pump Fiber-Optical Parametric Amplifier,” in OFC, OSA Technical Digest (Optical Society of America, 2012), OM3B.2.
  15. K. G. Petrillo, M. A. Foster, “Scalable ultrahigh-speed optical transmultiplexer using a time lens,” Opt. Express 19(15), 14051–14059 (2011). [CrossRef] [PubMed]
  16. B. H. Kolner, “The pinhole time camera,” J. Opt. Soc. Am. A 14(12), 3349–3357 (1997). [CrossRef]
  17. H. Y. Jiang, L. S. Yan, Y. F. Sun, J. Ye, W. Pan, B. Luo, X. H. Zou, “Photonic arbitrary waveform generation based on crossed frequency to time mapping,” Opt. Express 21(5), 6488–6496 (2013). [CrossRef] [PubMed]
  18. V. Torres-Company, J. Lancis, P. Andrés, L. R. Chen, “20 GHz arbitrary radio-frequency waveform generator based on incoherent pulse shaping,” Opt. Express 16(26), 21564–21569 (2008). [CrossRef] [PubMed]
  19. D. R. Solli, J. Chou, B. Jalali, “Amplified wavelength-time transformation for real-time spectroscopy,” Nat. Photonics 2(1), 48–51 (2008). [CrossRef]
  20. G. Agrawal, “Nonlinear fiber optics,” in Nonlinear Science at the Dawn of the 21st Century, (Springer, 2000), 195-211.
  21. D. Jianji, Y. Yuan, Z. Yin, L. Bowen, Y. Ting, Z. Xinliang, “Arbitrary-Order Bandwidth-Tunable Temporal Differentiator Using a Programmable Optical Pulse Shaper,” IEEE Photon. J. 3(6), 996–1003 (2011). [CrossRef]
  22. S. Watanabe, T. Naito, T. Chikama, “Compensation of chromatic dispersion in a single-mode fiber by optical phase conjugation,” IEEE Photon. Technol. Lett. 5(1), 92–95 (1993). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited