OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8136–8142

Bright single photon source based on self-aligned quantum dot–cavity systems

Sebastian Maier, Peter Gold, Alfred Forchel, Niels Gregersen, Jesper Mørk, Sven Höfling, Christian Schneider, and Martin Kamp  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8136-8142 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2481 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We report on a quasi-planar quantum-dot-based single-photon source that shows an unprecedented high extraction efficiency of 42% without complex photonic resonator geometries or post-growth nanofabrication. This very high efficiency originates from the coupling of the photons emitted by a quantum dot to a Gaussian shaped nanohill defect that naturally arises during epitaxial growth in a self-aligned manner. We investigate the morphology of these defects and characterize the photonic operation mechanism. Our results show that these naturally arising coupled quantum dot-defects provide a new avenue for efficient (up to 42% demonstrated) and pure (g2(0) value of 0.023) single-photon emission.

© 2014 Optical Society of America

OCIS Codes
(230.5590) Optical devices : Quantum-well, -wire and -dot devices
(230.5750) Optical devices : Resonators
(270.5290) Quantum optics : Photon statistics
(270.5565) Quantum optics : Quantum communications

ToC Category:

Original Manuscript: February 4, 2014
Revised Manuscript: March 13, 2014
Manuscript Accepted: March 14, 2014
Published: March 31, 2014

Sebastian Maier, Peter Gold, Alfred Forchel, Niels Gregersen, Jesper Mørk, Sven Höfling, Christian Schneider, and Martin Kamp, "Bright single photon source based on self-aligned quantum dot–cavity systems," Opt. Express 22, 8136-8142 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. N. Gisin, G. Ribordy, W. Tittel, H. Zbinden, “Quantum cryptography,” Rev. Mod. Phys. 74(1), 145–195 (2002). [CrossRef]
  2. S. Strauf, “Quantum optics: Towards efficient quantum sources,” Nat. Photonics 4(3), 132–134 (2010). [CrossRef]
  3. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409(6816), 46–52 (2001). [CrossRef] [PubMed]
  4. M. Bayer, O. Stern, P. Hawrylak, S. Fafard, A. Forchel, “Hidden symmetries in the energy levels of excitonic ‘artificial atoms’,” Nature 405(6789), 923–926 (2000). [CrossRef] [PubMed]
  5. N. Gregersen, P. Kaer, J. Mørk, “Modeling and design of high-efficiency single-photon sources,” IEEE J. Sel. Top. Quantum Electron. 19(5), 9000516 (2013). [CrossRef]
  6. T. Heindel, C. Schneider, M. Lermer, S. H. Kwon, T. Braun, S. Reitzenstein, S. Höfling, M. Kamp, A. Forchel, “Electrically driven quantum dot-micropillar single photon source with 34% overall efficiency,” Appl. Phys. Lett. 96(1), 011107 (2010). [CrossRef]
  7. M. Pelton, C. Santori, J. Vucković, B. Zhang, G. S. Solomon, J. Plant, Y. Yamamoto, “Efficient source of single photons: a single quantum dot in a micropost microcavity,” Phys. Rev. Lett. 89(23), 233602 (2002). [CrossRef] [PubMed]
  8. O. Gazzano, S. Michaelis de Vasconcellos, C. Arnold, A. Nowak, E. Galopin, I. Sagnes, L. Lanco, A. Lemaître, P. Senellart, “Bright solid-state sources of indistinguishable single photons,” Nat. Commun. 4, 1425 (2013). [CrossRef] [PubMed]
  9. J. Claudon, J. Bleuse, N. S. Malik, M. Bazin, P. Jaffrennou, N. Gregersen, C. Sauvan, P. Lalanne, J.-M. Gérard, “A highly efficient single-photon source based on a quantum dot in a photonic nanowire,” Nat. Photonics 4(3), 174–177 (2010). [CrossRef]
  10. M. E. Reimer, G. Bulgarini, N. Akopian, M. Hocevar, M. B. Bavinck, M. A. Verheijen, E. P. A. M. Bakkers, L. P. Kouwenhoven, V. Zwiller, “Bright single-photon sources in bottom-up tailored nanowires,” Nat. Commun. 3, 737 (2012). [CrossRef] [PubMed]
  11. X.-W. Chen, S. Götzinger, V. Sandoghdar, “99% efficiency in collecting photons from a single emitter,” Opt. Lett. 36(18), 3545–3547 (2011). [CrossRef] [PubMed]
  12. D. Press, K. De Greve, P. L. McMahon, T. D. Ladd, B. Friess, C. Schneider, M. Kamp, S. Höfling, A. Forchel, Y. Yamamoto, “Ultrafast optical spin echo in a single quantum dot,” Nat. Photonics 4(6), 367–370 (2010). [CrossRef]
  13. K. De Greve, D. Press, P. L. McMahon, Y. Yamamoto, “Ultrafast optical control of individual quantum dot spin qubits,” Rep. Prog. Phys. 76(9), 092501 (2013). [CrossRef] [PubMed]
  14. P. Royo, R. P. Stanley, M. Ilegems, “Planar dielectric microcavity light-emitting diodes: Analytical analysis of the extraction efficiency,” J. Appl. Phys. 90(1), 283–293 (2001). [CrossRef]
  15. J. M. García, T. Mankad, P. O. Holtz, P. J. Wellman, P. M. Petroff, “Electronic states tuning of InAs self-assembled quantum dots,” Appl. Phys. Lett. 72(24), 3172–3174 (1998). [CrossRef]
  16. J. M. Zajac, W. Langbein, “Structure and zero-dimensional polariton spectrum of natural defects in GaAs/AlAs microcavities,” Phys. Rev. B 86(19), 195401 (2012). [CrossRef]
  17. F. Ding, T. Stöferle, L. Mai, A. Knoll, R. F. Mahrt, “Vertical microcavities with high Q and strong lateral mode confinement,” Phys. Rev. B 87(16), 161116 (2013). [CrossRef]
  18. L. Mai, F. Ding, T. Stöferle, A. Knoll, B. J. Offrein, R. F. Mahrt, “Integrated vertical microcavity using a nano-scale deformation for strong lateral confinement,” Appl. Phys. Lett. 103(24), 243305 (2013). [CrossRef]
  19. O. El Daïf, A. Baas, T. Guillet, J.-P. Brantut, R. Idrissi Kaitouni, J. L. Staehli, F. Morier-Genoud, B. Deveaud, “Polariton quantum boxes in semiconductor microcavities,” Appl. Phys. Lett. 88(6), 061105 (2006). [CrossRef]
  20. C. Santori, D. Fattal, J. Vucković, G. S. Solomon, Y. Yamamoto, “Indistinguishable photons from a single-photon device,” Nature 419(6907), 594–597 (2002). [CrossRef] [PubMed]
  21. P. Gold, A. Thoma, S. Maier, S. Reitzenstein, C. Schneider, S. Höfling, M. Kamp, “Two-photon interference from remote quantum dots with inhomogeneously broadened linewidths,” Phys. Rev. B 89(3), 035313 (2014). [CrossRef]
  22. P. Bienstman, R. Baets, “Optical modelling of photonic crystals and VCSELs using eigenmode expansion and perfectly matched layers,” Opt. Quantum Electron. 33(4–5), 327–341 (2001). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited