OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8150–8155

Microfiber coupler based label-free immunosensor

Lin Bo, Christy Charlton O’Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, and Gerald Farrell  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8150-8155 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (812 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Optical microfibers and related structures which incorporate large evanescent field and minimal size offer new opportunities for biosensing applications. In this paper we report the development of an immunosensor based on a tapered microfiber coupler embedded in a low refractive index polymer. Biomolecules adsorbed on the microfiber coupler surface modify the surrounding refractive index. By immobilizing antigens on the surface of the sensing area, the microfiber coupler was able to operate as a label-free immunosensor to detect specific antibodies. We experimentally demonstrated for the first time the sensing ability of this sensor using a fibrinogen antigen-antibody pair. By monitoring the spectral shift in the wavelength domain, the sensor was shown to be capable of detecting the specific binding between fibrinogen and anti-fibrinogen. The detected signal was found to be proportional to the anti-fibrinogen present.

© 2014 Optical Society of America

OCIS Codes
(060.2370) Fiber optics and optical communications : Fiber optics sensors
(280.1415) Remote sensing and sensors : Biological sensing and sensors

ToC Category:

Original Manuscript: October 31, 2013
Revised Manuscript: November 1, 2013
Manuscript Accepted: November 27, 2013
Published: April 1, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Lin Bo, Christy Charlton O’Mahony, Yuliya Semenova, Niamh Gilmartin, Pengfei Wang, and Gerald Farrell, "Microfiber coupler based label-free immunosensor," Opt. Express 22, 8150-8155 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. R. Thévenot, K. Toth, R. A. Durst, G. S. Wilson, “Electrochemical biosensors: recommended definitions and classification,” Biosens. Bioelectron. 16(1-2), 121–131 (2001). [PubMed]
  2. B. J. Tromberg, M. J. Sepaniak, T. Vo-Dinh, G. D. Griffin, “Fiber-optic chemical sensors for competitive binding fluoroimmunoassay,” Anal. Chem. 59(8), 1226–1230 (1987). [CrossRef] [PubMed]
  3. G. P. Anderson, N. L. Nerurkar, “Improved fluoroimmunoassays using the dye Alexa Fluor 647 with the RAPTOR, a fiber optic biosensor,” J. Immunol. Methods 271(1-2), 17–24 (2002). [CrossRef] [PubMed]
  4. T. Endo, S. Yamamura, N. Nagatani, Y. Morita, Y. Takamura, E. Tamiya, “Localized surface plasmon resonance based optical biosensor using surface modified nanoparticle layer for label-free monitoring of antigen–antibody reaction,” Sci. Technol. Adv. Mater. 6(5), 491–500 (2005). [CrossRef]
  5. J. M. Corres, J. Bravo, I. R. Matias, F. J. Arregui, “Tapered optical fiber biosensor for the detection of anti-gliadin antibodies,” Sens. Actuat. Biol. Chem. 135, 166–171 (2008).
  6. Y. Tian, W. Wang, N. Wu, X. Zou, X. Wang, “Tapered optical fiber sensor for label-free detection of biomolecules,” Sensors (Basel) 11(12), 3780–3790 (2011). [CrossRef] [PubMed]
  7. L. Tong, R. R. Gattass, J. B. Ashcom, S. L. He, J. Y. Lou, M. Y. Shen, I. Maxwell, E. Mazur, “Subwavelength-diameter silica wires for low-loss optical wave guiding,” Nature 426(6968), 816–819 (2003). [CrossRef] [PubMed]
  8. F. Xu, P. Horak, G. Brambilla, “Optical microfiber coil resonator refractometric sensor,” Opt. Express 15(12), 7888–7893 (2007). [CrossRef] [PubMed]
  9. Y. Jung, G. Brambilla, D. J. Richardson, “Optical microfiber coupler for broadband single-mode operation,” Opt. Express 17(7), 5273–5278 (2009). [CrossRef] [PubMed]
  10. P. Wang, M. Ding, G. Brambilla, Y. Semenova, Q. Wu, G. Farrell, “High temperature performance of an optical microfiber coupler and its potential use as a sensor,” Electron. Lett. 48(5), 283–284 (2012). [CrossRef]
  11. L. Bo, P. Wang, Y. Semenova, G. Farrell, “High sensitivity fiber refractometer based on an optical microfiber coupler,” IEEE Photon. Technol. Lett. 25(3), 228–230 (2013). [CrossRef]
  12. J. Vörös, “The density and refractive index of adsorbing protein layers,” Biophys. J. 87(1), 553–561 (2004). [CrossRef] [PubMed]
  13. H. Tazawa, T. Kanie, M. Katayama, “Fiber-optic coupler sensors for biosensing,” SEI Technical Review 65, 67–70 (2007).
  14. K. Okamoto, Fundamentals of Optical Waveguides (Elsevier Academic Press, 2006).
  15. F. P. Payne, S. D. Hussey, M. S. Yataki, “Polarisation analysis of strongly fused and weakly fused tapered couplers,” Electron. Lett. 21(13), 561–563 (1985). [CrossRef]
  16. G. Brambilla, V. Finazzi, D. Richardson, “Ultra-low-loss optical fiber nanotapers,” Opt. Express 12(10), 2258–2263 (2004). [CrossRef] [PubMed]
  17. R. G. Lamont, D. C. Johnson, K. O. Hill, “Power transfer in fused biconical-taper single-mode fiber couplers: dependence on external refractive index,” Appl. Opt. 24(3), 327–332 (1985). [CrossRef] [PubMed]
  18. F. Xu, G. Brambilla, “Embedding optical microfiber coil resonators in Teflon,” Opt. Lett. 32(15), 2164–2166 (2007). [CrossRef] [PubMed]
  19. G. Vienne, Y. Li, L. Tong, “Effect of host polymer on microfiber resonator,” IEEE Photon. Technol. Lett. 19(18), 1386–1388 (2007). [CrossRef]
  20. Y. Semenova, L. Bo, P. Wang, S. Mathews, Q. Wu, M. Teng, C. Yu, G. Farrell, “Experimental study of temperature response of a microfiber coupler sensor with a liquid crystal overlay,” Proc., Fifth European Workshop on Optical Fibre Sensors (2013). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4 Fig. 5

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited