OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8156–8164

Effect of active region position in Fabry-Perot single transverse mode broad-waveguide InGaAsP/InP lasers

M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8156-8164 (2014)
http://dx.doi.org/10.1364/OE.22.008156


View Full Text Article

Enhanced HTML    Acrobat PDF (909 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

The dependence of laser performance on the active region position in broad-waveguide laser diodes is presented in this paper. Performance of structures with different position of active region is compared in simulation and actual devices. Lasers with active region displaced towards the p-cladding layer outperformed the lasers with active region undisplaced or displaced towards the n-cladding layer both in simulation and experimentally. Maximum output power increased by 25% for devices with active region displaced towards the p-cladding layer.

© 2014 Optical Society of America

OCIS Codes
(140.0140) Lasers and laser optics : Lasers and laser optics
(140.2020) Lasers and laser optics : Diode lasers
(140.3570) Lasers and laser optics : Lasers, single-mode
(140.5960) Lasers and laser optics : Semiconductor lasers
(250.0250) Optoelectronics : Optoelectronics

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: May 15, 2013
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 24, 2014
Published: April 1, 2014

Citation
M. Lysevych, H. H. Tan, F. Karouta, and C. Jagadish, "Effect of active region position in Fabry-Perot single transverse mode broad-waveguide InGaAsP/InP lasers," Opt. Express 22, 8156-8164 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8156


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. G. Iordache, M. Buda, G. A. Acket, T. G. van de Roer, L. M. F. Kaufmann, F. Karouta, C. Jagadish, H. H. Tan, “High power CW output from low confinement asymmetric structure diode laser,” Electron. Lett. 35(2), 148–149 (1999). [CrossRef]
  2. Y. Nagashima, S. Onuki, Y. Shimose, A. Yamada, and T. Kikugawa, “1480-nm pump laser with asymmetric quaternary cladding structure achieving high output power of >1.2 W with low power consumption,” in Proceedings of IEEE Semiconductor Laser Conference (Institute of Electrical and Electronics Engineers, 19th International, 2004), pp. 47–48. [CrossRef]
  3. A. Guermache, V. Voiriot, N. Bouche, F. Lelarge, D. Locatelli, R. M. Capella, J. Jacquet, “1W fibre coupled power InGaAsP/InP 14xx pump laser for Raman amplification,” Electron. Lett. 40(24), 1535–1536 (2004). [CrossRef]
  4. M. Lysevych, H. H. Tan, F. Karouta, L. Fu, C. Jagadish, “Merged beam laser design for reduction of gain-saturation and two-photon absorption in high power single mode semiconductor lasers,” Opt. Express 21(7), 8276–8285 (2013). [CrossRef] [PubMed]
  5. L. J. Mawst, A. Bhattacharya, J. Lopez, D. Botez, D. Z. Garbuzov, L. DeMarco, J. C. Connolly, M. Jansen, F. Fang, R. F. Nabiev, “8 W continuous wave front-facet power from broad-waveguide Al-free 980 nm diode lasers,” Appl. Phys. Lett. 69(11), 1532–1534 (1996). [CrossRef]
  6. D. Garbuzov, L. Xu, S. R. Forest, R. Menna, R. Martinelli, J. C. Connolly, “1.5 µm wavelength, SCH-MQW InGaAsP/InP broadened-waveguide laser diodes with low internal loss and high output power,” Electron. Lett. 32(18), 1717–1719 (1996). [CrossRef]
  7. J. J. Plant, P. W. Juodawlkis, R. K. Huang, J. P. Donnelly, L. J. Missaggia, K. G. Ray, “1.5-μm InGaAsP-InP slab-coupled optical waveguide lasers,” Photon. Technol. Lett. 17(4), 735–737 (2005). [CrossRef]
  8. N. A. Pikhtin, S. O. Slipchenko, Z. N. Sokolova, A. L. Stankevich, D. A. Vinokurov, I. S. Tarasov, Zh. I. Alferov, “16W continuous-wave output power from 100 lm-aperture laser with quantum well asymmetric heterostructure,” Electron. Lett. 40(22), 1413–1414 (2004). [CrossRef]
  9. R. Nagarajan, “Carrier transport effects in quantum well lasers: an overview,” Opt. Quantum Electron. 26(7), S647–S666 (1994). [CrossRef]
  10. H. Yamazaki, A. Tomita, M. Yamaguchi, Y. Sasaki, “Evidence of nonuniform carrier distribution in multiple quantum well lasers,” Appl. Phys. Lett. 71(6), 767–769 (1997). [CrossRef]
  11. R. F. Kazarinov, M. R. Pinto, “Carrier transport in laser heterostructures,” J. Quantum Electron. 30(1), 49–53 (1994). [CrossRef]
  12. “LaserMOD user guide,” RSOFT Design Group, Inc.
  13. M. Lysevych, H. H. Tan, F. Karouta, C. Jagadish, “Single-step RIE fabrication process of low loss InP waveguide using CH4 / H2 chemistry,” J. Electrochem. Soc. 158(3), H281–H284 (2011). [CrossRef]
  14. P. W. A. McIlroy, A. Kurobe, Y. Uematsu, “Analysis and application of theoretical gain curves to the design of multi-quantum-well lasers,” J. Quantum Electron. 21(12), 1958–1963 (1985). [CrossRef]
  15. F. Karouta, E. Smalbrugge, W. C. van der Vleuten, S. Gaillard, G. A. Acket, “Fabrication of short GaAs wet-etched mirror lasers and their complex spectral behavior,” J. Quantum Electron. 34(8), 1474–1479 (1998). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited