OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8190–8204

Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8190-8204 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1218 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We study light transport in phosphor plates of white light-emitting diodes (LEDs). We measure the broadband diffuse transmission through phosphor plates of varying YAG:Ce3+ density. We distinguish the spectral ranges where absorption, scattering, and re-emission dominate. Using diffusion theory, we derive the transport and absorption mean free paths from first principles. We find that both transport and absorption mean free paths are on the order of the plate thickness. This means that phosphors in commercial LEDs operate well within an intriguing albedo range around 0.7. We discuss how salient parameters that can be derived from first principles control the optical properties of a white LED.

© 2014 Optical Society of America

OCIS Codes
(160.5690) Materials : Rare-earth-doped materials
(230.3670) Optical devices : Light-emitting diodes
(290.1990) Scattering : Diffusion
(290.4210) Scattering : Multiple scattering
(290.5850) Scattering : Scattering, particles
(330.1715) Vision, color, and visual optics : Color, rendering and metamerism

ToC Category:

Original Manuscript: November 28, 2013
Revised Manuscript: February 24, 2014
Manuscript Accepted: February 24, 2014
Published: April 1, 2014

V. Y. F. Leung, A. Lagendijk, T. W. Tukker, A. P. Mosk, W. L. IJzerman, and W. L. Vos, "Interplay between multiple scattering, emission, and absorption of light in the phosphor of a white light-emitting diode," Opt. Express 22, 8190-8204 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. F. Schubert, Light Emitting Diodes (Cambridge University, 2006). [CrossRef]
  2. M. R. Krames, O. B. Shchekin, R. Mueller-Mach, G. O. Mueller, L. Zhou, G. Harbers, M. G. Craford, “Status and future of high-power light-emitting diodes for solid-state lighting,” J. Disp. Technol. 3, 160–175 (2007). [CrossRef]
  3. H. Bechtel, P. Schmidt, W. Busselt, B. S. Schreinemacher, “Lumiramic: a new phosphor technology for high performance solid state light sources,” Proc. SPIE 7058, 70580E (2008). [CrossRef]
  4. C. Gilray, I. Lewin, “Monte Carlo techniques for the design of illumination optics,” in Illuminating Engineering Society North America (IESNA) Annual Conference Technical Papers(July 1996), Paper no. 85, pp. 65–80.
  5. C. Sommer, J. R. Krenn, P. Hartmann, P. Pachler, M. Schweighart, S. Tasch, F. P. Wenzl, “Effect of phosphor particle sizes on the angular homogeneity of phosphor-converted high-power white LED light sources,” IEEE J. Sel. Top. Quantum Electron. 15, 1181–1188 (2009). [CrossRef]
  6. Z. Liu, S. Liu, K. Wang, X. Luo, “Measurement and numerical studies of optical properties of YAG:Ce phosphor for white light-emitting diode packaging,” Appl. Opt. 49, 247–257 (2010). [CrossRef] [PubMed]
  7. T. W. Tukker, “Fluorescence modeling in remote and close LED illumination devices,” in SPIE International Optical Design Conference 2010, Jackson Hole, WY, U.S.A. (June 2010), Paper no. ITuE2.
  8. E. Alerstam, T. Svensson, S. Andersson-Engels, “Parallel computing with graphics processing units for high-speed Monte Carlo simulation of photon migration,” J. Biomed. Opt. 13, 060504 (2008). [CrossRef]
  9. E. Alerstam, W. C. Y. Lo, T. D. Han, J. Rose, S. Andersson-Engels, L. Lilge, “Next-generation acceleration and code optimization for light transport in turbid media using GPUs,” Biomed. Opt. Express 1, 658–675 (2010). [CrossRef]
  10. A. Lagendijk, B. A. van Tiggelen, “Resonant multiple scattering of light,” Phys. Rep. 270, 143–215 (1996). [CrossRef]
  11. M. C. W. van Rossum, T. M. Nieuwenhuizen, “Multiple scattering of classical waves: microscopy, mesoscopy, and diffusion,” Rev. Mod. Phys. 71, 313–371 (1999). [CrossRef]
  12. B. P. J. Bret, Multiple Light Scattering in Porous Gallium Phosphide, Ph.D. thesis (University of Twente, 2005).
  13. E. Akkermans, G. Montambaux, Mesoscopic Physics of Electrons and Photons (Cambridge University, 2007). [CrossRef]
  14. W. L. Vos, T. W. Tukker, A. P. Mosk, A. Lagendijk, W. L. IJzerman, “Broadband mean free path of diffuse light in polydisperse ensembles of scatterers for white LED lighting,” Appl. Opt. 52, 2602–2609 (2013). [CrossRef] [PubMed]
  15. D. J. Durian, “Influence of boundary reflection and refraction on diffusive photon transport,” Phys. Rev. E 50, 857–866 (1994). [CrossRef]
  16. N. Garcia, A. Z. Genack, A. A. Lisyansky, “Measurement of the transport mean free path of diffusing photons,” Phys. Rev. B 46, 14475–14479 (1992). [CrossRef]
  17. See catalog at: http://www.lighting.philips.co.uk/pwc_li/gb_en/subsites/oem/fortimo-led-catalogue , retrieved August, 2013.
  18. L. G. Van Uitert, D. A. Pinnow, J. C. Williams, “Photoluminescent conversion of laser light for black and white and multicolor displays. 1: Materials,” Appl. Opt. 10, 150–153 (1971). [CrossRef] [PubMed]
  19. P. D. García, R. Sapienza, J. Bertolotti, M. D. Martín, Á. Blanco, A. Altube, L. Viña, D. S. Wiersma, C. López, “Resonant light transport through Mie modes in photonic glasses,” Phys. Rev. A 78, 023823 (2008). [CrossRef]
  20. A. Ishimaru, Wave Propagation and Scattering in Random Media (Academic, 1978), Vols. I and II.
  21. A. Lagendijk, R. Vreeker, P. de Vries, “Influence of internal reflection on diffusive transport in strongly scattering media,” Phys. Lett. A 136, 81–88 (1989). [CrossRef]
  22. J. X. Zhu, D. J. Pine, D. A. Weitz, “Internal reflection of diffusive light in random media,” Phys. Rev. A 44, 3948–3959 (1991). [CrossRef] [PubMed]
  23. J. Gómez Rivas, R. Sprik, C. M. Soukoulis, K. Busch, A. Lagendijk, “Optical transmission through strong scattering and highly polydisperse media,” Europhys. Lett. 48, 22–28 (1999). [CrossRef]
  24. O. L. Muskens, A. Lagendijk, “Broadband enhanced backscattering spectroscopy of strongly scattering media,” Opt. Express 16, 1222–1231 (2008). [CrossRef] [PubMed]
  25. H. C. van de Hulst, Light Scattering by Small Particles (Dover, 1957).
  26. C. F. Bohren, D. R. Huffmann, Absorption and Scattering of Light by Small Particles (Wiley, 1983).
  27. M. B. van der Mark, M. P. van Albada, A. Lagendijk, “Light scattering in strongly scattering media: multiple scattering and weak localization,” Phys. Rev. B 37, 3575–3592 (1988). [CrossRef]
  28. M. B. van der Mark, Propagation of Light in Disordered Media: A Search for Anderson Localization, Ph.D. thesis (University of Twente, 1990).
  29. P.-A. Lemieux, M. U. Vera, D. J. Durian, “Diffusing-light spectroscopies beyond the diffusion limit: the role of ballistic transport and anisotropic scattering,” Phys. Rev. E 57, 4498–4515 (1998). [CrossRef]
  30. W. Meulebroeck, Y. Meuret, S. Heyvaert, H. Thienpont, “The experimental characterization of the absorption and scatter properties of photopolymers,” Proc. SPIE 8439, 84391Z (2012). [CrossRef]
  31. J. R. Nagel, M. A. Scarpulla, “Enhanced absorption in optically thin solar cells by scattering from embedded dielectric nanoparticles,” Opt. Express 18, A139–A146 (2010). [CrossRef] [PubMed]
  32. D. Malacara, Color Vision and Colorimetry: Theory and Applications (SPIE, 2011).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited