OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8219–8225

Two-dimensional hybrid photonic/plasmonic crystal cavities

Tsung-li Liu, Kasey J. Russell, Shanying Cui, and Evelyn L. Hu  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8219-8225 (2014)
http://dx.doi.org/10.1364/OE.22.008219


View Full Text Article

Enhanced HTML    Acrobat PDF (1349 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a 2-D plasmonic crystal design with visible band-gap by combining a 2-D photonic crystal with TM band-gap and a silver surface. Simulations show that the presence of the silver surface gives rise to an expanded band-gap. A plasmonic crystal defect cavity with Q ~300 and mode volume ~1.9x10−2 (λ/n) 3 can be formed using our design. The total Q of such a cavity is determined by both the radiative loss of the dielectric component, as well as absorption loss to the metal. We provide design criteria for the optimization of the total Q to allow high radiative or extraction efficiency.

© 2014 Optical Society of America

OCIS Codes
(250.0250) Optoelectronics : Optoelectronics
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Photonic Crystals

History
Original Manuscript: December 16, 2013
Revised Manuscript: February 21, 2014
Manuscript Accepted: March 2, 2014
Published: April 1, 2014

Citation
Tsung-li Liu, Kasey J. Russell, Shanying Cui, and Evelyn L. Hu, "Two-dimensional hybrid photonic/plasmonic crystal cavities," Opt. Express 22, 8219-8225 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8219


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. D. K. Gramotnev, S. I. Bozhevolnyi, “Plasmonics beyond the diffraction limit,” Nat. Photonics 4(2), 83–91 (2010). [CrossRef]
  2. S. Kühn, U. Håkanson, L. Rogobete, V. Sandoghdar, “Enhancement of single-molecule fluorescence using a gold nanoparticle as an optical nanoantenna,” Phys. Rev. Lett. 97(1), 017402 (2006). [CrossRef] [PubMed]
  3. K. J. Russell, T.-L. Liu, S. Cui, E. L. Hu, “Large spontaneous emission enhancement in plasmonic nanocavities,” Nat. Photonics 6(7), 459–462 (2012). [CrossRef]
  4. P. Anger, P. Bharadwaj, L. Novotny, “Enhancement and quenching of single-molecule fluorescence,” Phys. Rev. Lett. 96(11), 113002 (2006). [CrossRef] [PubMed]
  5. K. Okamoto, I. Niki, A. Shvartser, Y. Narukawa, T. Mukai, A. Scherer, “Surface-plasmon-enhanced light emitters based on InGaN quantum wells,” Nat. Mater. 3(9), 601–605 (2004). [CrossRef] [PubMed]
  6. K. J. Vahala, “Optical microcavities,” Nature 424(6950), 839–846 (2003). [CrossRef] [PubMed]
  7. J.-M. Gerard, B. Gayral, “Strong Purcell effect for InAs quantum boxes in three-dimensional solid-state microcavities,” J. Lightwave Technol. 17(11), 2089–2095 (1999). [CrossRef]
  8. P. Goy, J. M. Raimond, M. Gross, S. Haroche, “Observation of cavity-enhanced single-atom spontaneous emission,” Phys. Rev. Lett. 50(24), 1903–1906 (1983). [CrossRef]
  9. K. Hennessy, A. Badolato, M. Winger, D. Gerace, M. Atatüre, S. Gulde, S. Fält, E. L. Hu, A. Imamoğlu, “Quantum nature of a strongly coupled single quantum dot-cavity system,” Nature 445(7130), 896–899 (2007). [CrossRef] [PubMed]
  10. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  11. E. Yablonovitch, “Inhibited spontaneous emission in solid-state physics and electronics,” Phys. Rev. Lett. 58(20), 2059–2062 (1987). [CrossRef] [PubMed]
  12. J. D. Joannopoulos, S. G. Johnson, J. N. Winn, and R. D. Meade, Photonic Crystals: Molding the Flow of Light (Princeton University, 1995).
  13. X. Yang, A. Ishikawa, X. Yin, X. Zhang, “Hybrid photonic-plasmonic crystal nanocavities,” ACS Nano 5(4), 2831–2838 (2011). [CrossRef] [PubMed]
  14. A. M. Lakhani, M.-K. Kim, E. K. Lau, M. C. Wu, “Plasmonic crystal defect nanolaser,” Opt. Express 19(19), 18237–18245 (2011). [CrossRef] [PubMed]
  15. S. Randhawa, M. U. González, J. Renger, S. Enoch, R. Quidant, “Design and properties of dielectric surface plasmon Bragg mirrors,” Opt. Express 18(14), 14496–14510 (2010). [CrossRef] [PubMed]
  16. L. Feng, M.-H. Lu, V. Lomakin, Y. Fainman, “Plasmonic photonic crystal with a complete band gap for surface plasmon polariton waves,” Appl. Phys. Lett. 93(23), 231105 (2008). [CrossRef]
  17. S. G. Johnson and J. D. Joannopoulos, Photonic Crystals: The Road From Theory to Practice (Kluwer Academic, 2002).
  18. P. B. Johnson, R. W. Christy, “Optical constants of the noble metals,” Phys. Rev. B 6(12), 4370–4379 (1972). [CrossRef]
  19. A. C. Scofield, J. N. Shapiro, A. Lin, A. D. Williams, P. S. Wong, B. L. Liang, D. L. Huffaker, “Bottom-up photonic crystal cavities formed by patterned III-V nanopillars,” Nano Lett. 11(6), 2242–2246 (2011). [CrossRef] [PubMed]
  20. Y. Akahane, T. Asano, B.-S. Song, S. Noda, “High-Q photonic nanocavity in a two-dimensional photonic crystal,” Nature 425(6961), 944–947 (2003). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited