OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8234–8242

Manipulating photon emission efficiency with local electronic states in a tunneling gap

Peng Chen, Weihua Wang, Nian Lin, and Shengwang Du  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8234-8242 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1629 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We demonstrate manipulation of photon emission efficiency in a tunneling gap by tuning the rates of elastic and inelastic electron tunneling processes with local electronic states. The artificial local electronic states are created by a scanning tunneling microscope tip on a CuN nanoisland grown on a Cu(100) surface at cryogenic temperature. These local electronic states can either enhance or suppress the excitation of tip-induced surface plasmon modes at specific bias voltages, and thus the induced photon emission rates. A theoretical model quantitatively analyzing inelastic and elastic tunneling processes associated with characteristic electronic states shows good agreement with experiments. We also show that tip-induced photon emission measurement can be used for probing the electronic states in the tunneling gap.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(240.7040) Optics at surfaces : Tunneling
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence

ToC Category:

Original Manuscript: January 3, 2014
Revised Manuscript: March 12, 2014
Manuscript Accepted: March 14, 2014
Published: April 1, 2014

Peng Chen, Weihua Wang, Nian Lin, and Shengwang Du, "Manipulating photon emission efficiency with local electronic states in a tunneling gap," Opt. Express 22, 8234-8242 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y.-J. Lu, J. Kim, H.-Y. Chen, C. Wu, N. Dabidian, C. E. Sanders, C.-Y. Wang, M.-Y. Lu, B.-H. Li, X. Qiu, W. Chang, L.-J. Chen, G. Shvets, C.-K. Shih, S. Gwo, “Plasmonic nanolaser using epitaxially grown silver film,” Science 337, 450–453 (2012). [CrossRef] [PubMed]
  2. K. J. Savage, M. M. Hawkeye, R. Esteban, A. G. Borisov, J. Aizpurua, J. J. Baumberg, “Revealing the quantum regime in tunnelling plasmonics,” Nature 491, 574–577 (2012). [CrossRef] [PubMed]
  3. R. Esteban, A. G. Borisov, P. Nordlander, J. Aizpurua, “Bridging quantum and classical plasmonics with a quantum-corrected model,” Nat. Commun. 3, 825 (2012). [CrossRef] [PubMed]
  4. N. A. Mortensen, S. Raza, M. Wubs, T. Søndergaard, S. I. Bozhevolnyi, “Generalized nonlocal optical response in nanoplasmonics,” arXiv: cond-mat/1312.7190
  5. R. Berndt, J. K. Gimzewski, P. Johansson, “Inelastic tunneling excitation of tip-induced plasmon modes on noble-metal surfaces,” Phys. Rev. Lett. 67, 3796–3799 (1991). [CrossRef] [PubMed]
  6. H.-M. Benia, P. Myrach, N. Nilius, “Photon emission spectroscopy of thin MgO films with the STM: from a tip-mediated to an intrinsic emission characteristic,” New J. Phys. 10, 013010 (2008). [CrossRef]
  7. M. Reinhardt, G. Schull, P. Ebert, R. Berndt, “Atomic resolution in tunneling induced light emission from GaAs(100),” Appl. Phys. Lett. 96, 152107 (2010). [CrossRef]
  8. X. H. Qiu, G. V. Nazin, W. Ho, “Vibrationally resolved fluorescence excited with submolecular precision,” Science 299, 542–546 (2003). [CrossRef] [PubMed]
  9. Z.-C. Dong, X.-L. Guo, A. S. Trifonov, P. S. Dorozhkin, K. Miki, K. Kimura, S. Yokoyama, S. Mashiko, “Vibrationally resolved fluorescence from organic molecules near metal surfaces in a scanning tunneling microscope,” Phys. Rev. Lett. 92, 086801 (2004). [CrossRef] [PubMed]
  10. N. Nilius, N. Ernst, H.-J. Freund, “Photon emission spectroscopy of individual oxide-supported silver clusters in a scanning tunneling microscope,” Phys. Rev. Lett. 84, 3994–3997 (2000). [CrossRef] [PubMed]
  11. G. Hoffmann, J. Kliewer, R. Berndt, “Luminescence from metallic quantum wells in a scanning tunneling microscope,” Phys. Rev. Lett. 87, 176803 (2001). [CrossRef] [PubMed]
  12. J. K. Gimzewski, J. K. Sass, R. R. Schlitter, J. Schott, “Enhanced photon emission in scanning tunnelling microscopy,” Europhys. Lett. 8, 435–440 (1989). [CrossRef]
  13. S. Ushioda, “Scanning tunneling microscope (STM) light emission spectroscopy of surface nanostructures,” J. Electron. Spectrosc. Rel. Phenom 109, 169–181 (2000). [CrossRef]
  14. G. Schull, N. Neel, P. Johansson, R. Berndt, “Electron-plasmon and electron-electron interactions at a single atom contact,” Phys. Rev. Lett. 102, 057401 (2009). [CrossRef] [PubMed]
  15. Y. Zhang, X. Tao, H. Y. Gao, Z. C. Dong, J. G. Hou, T. Okamoto, “Modulation of local plasmon mediated emission through molecular manipulation,” Phys. Rev. B 79, 075406 (2009). [CrossRef]
  16. F. Rossel, M. Pivetta, W.-D. Schneider, “Luminescence experiments on supported molecules with the scanning tunneling microscope,” Surf. Sci. Rep. 65, 129–144 (2010). [CrossRef]
  17. F. Geng, Y. Zhang, Y. Yu, Y. Kuang, Y. Liao, Z. C. Dong, J. G. Hou, “Modulation of nanocavity plasmonic emission by local molecular states of C60 on Au(111),” Opt. Express 20, 26725–26735 (2012). [CrossRef] [PubMed]
  18. J. Lambe, S. L. McCarthy, “Light emission from inelastic electron tunneling,” Phys. Rev. Lett. 37, 923–925 (1976). [CrossRef]
  19. B. N. J. Persson, A. Baratoff, “Theory of photon emission in electron tunneling to metallic particles,” Phys. Rev. Lett. 68, 3224–3227 (1992). [CrossRef] [PubMed]
  20. P. Johansson, R. Monreal, P. Apell, “Theory for light emission from a scanning tunneling microscope,” Phys. Rev. B 42, 9210–9213 (1990). [CrossRef]
  21. R. Berndt, J. K. Gimzewski, “Photon emission in scanning tunneling microscopy: interpretation of photon maps of metallic systems,” Phys. Rev. B 48, 4746–4754. (1993). [CrossRef]
  22. K. Perronet, L. Barbier, F. Charra, “Influence of the Au(111) reconstruction on the light emission induced by a scanning tunneling microscope,” Phys. Rev. B 70, 201405 (2004). [CrossRef]
  23. G. Hoffmann, T. Maroutian, R. Berndt, “Color view of atomic highs and lows in tunneling induced light emission,” Phys. Rev. Lett. 93, 076102 (2004). [CrossRef] [PubMed]
  24. C. Chen, C. A. Bobisch, W. Ho, “Visualization of Fermi’s golden rule through imaging of light emission from atomic silver chains,” Science 325, 981–985 (2009). [CrossRef] [PubMed]
  25. M. Sakurai, C. Thirstrup, M. Aono, “New aspects of light emission from STM,” Appl. Phys. A 80, 1153–1160 (2005). [CrossRef]
  26. G. V. Nazin, X. H. Qiu, W. Ho, “Atomic engineering of photon emission with a scanning tunneling microscope,” Phys. Rev. Lett. 90, 216110 (2003). [CrossRef] [PubMed]
  27. G. Schull, M. Becker, R. Berndt, “Imaging confined electrons with plasmonic light,” Phys. Rev. Lett. 101, 136801 (2008). [CrossRef] [PubMed]
  28. T. Lutz, C. Große, C. Dette, C. A. Kabakchiev, F. Schramm, M. Ruben, R. Gutzler, K. Kuhnke, U. Schlickum, K. Kern, “Molecular orbital gates for plasmon excitation,” Nano Lett. 13, 2846–2850 (2013). [CrossRef] [PubMed]
  29. N. L. Schneider, P. Johansson, R. Berndt, “Hot electron cascades in the scanning tunneling microscope,” Phys. Rev. B 87, 045409 (2013). [CrossRef]
  30. F. M. Leibsle, S. S. Dhesi, S. D. Barrett, A. W. Robinson, “STM observations of Cu(100)-c(2×2)N surfaces: evidence for attractive interactions and an incommensurate c(2 × 2) structure,” Surf. Sci. 317, 309–320 (1994). [CrossRef]
  31. C. D. Ruggiero, T. Choi, J. A. Gupta, “Tunneling spectroscopy of ultrathin insulating films: CuN on Cu(100),” Appl. Phys. Lett. 91, 253106 (2007). [CrossRef]
  32. C. F. Hirjibehedin, C.-Y. Lin, A. F. Otte, M. Ternes, C. P. Lutz, B. A. Jones, A. J. Heinrich, “Large magnetic anisotropy of a single atomic spin embedded in a surface molecular network,” Science 317, 1199–1203 (2007). [CrossRef] [PubMed]
  33. S. Wang, W. Wang, Y. Hong, B. Z. Tang, N. Lin, “Vibronic state assisted resonant transport in molecules strongly anchored at an electrode,” Phys. Rev. B 83, 115431 (2011). [CrossRef]
  34. K. Meguro, K. Sakamoto, R. Arafune, M. Satoh, S. Ushioda, “Origin of multiple peaks in the light emission spectra of a Au(111) surface induced by the scanning tunneling microscope,” Phys. Rev. B 65, 165405 (2002). [CrossRef]
  35. P. Johansson, “Light emission from a scanning tunneling microscope: fully retarded calculation,” Phys. Rev. B 58, 10823–10834 (1998). [CrossRef]
  36. J. Aizpurua, S. P. Apell, R. Berndt, “Role of tip shape in light emission from the scanning tunneling microscope,” Phys. Rev. B 62, 2065–2073 (2000). [CrossRef]
  37. X. Tao, Z. C. Dong, J. L. Yang, Y. Luo, J. G. Hou, J. Aizpurua, “Influence of a dielectric layer on photon emission induced by a scanning tunneling microscope,” J. Chem. Phys 130, 084706 (2009). [CrossRef] [PubMed]
  38. N. Nilius, N Ernst, H.-J. Freund, “Tip influence on plasmon excitations in single gold particles in an STM,” Phys. Rev. B 65, 115421 (2002). [CrossRef]
  39. Z. Q. Zou, Z. C. Dong, A. K. Kar, H. Nejo, “STM-induced photon emission spectra from the Cu(100) surface,” Surf. Sci. 512, L373–L378 (2002). [CrossRef]
  40. L. Douillard, F. Charra, “High-resolution mapping of plasmonic modes: photoemission and scanning tunnelling luminescence microscopies,” J. Phys. D Appl. Phys. 44, 464002 (2011). [CrossRef]
  41. S.-W. Hla, K.-F. Braun, V. Iancu, A. Deshpande, “Single-atom extraction by scanning tunneling microscope tip crash and nanoscale surface engineering,” Nano Lett. 4, 1997–2001 (2004). [CrossRef]
  42. S.-W. Hla, “Scanning tunneling microscopy single atom/molecule manipulation and its application to nanoscience and technology,” J. Vac. Sci. Technol. B 23, 1351–1360 (2005). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


Fig. 1 Fig. 2 Fig. 3
Fig. 4

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited