OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8291–8297

Diffraction of volume Bragg gratings under high flux laser irradiation

Xiang Zhang, Jiansheng Feng, Baoxing Xiong, Kuaisheng Zou, and Xiao Yuan  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8291-8297 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3086 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Diffraction property of transmitting volume Bragg gratings (VBGs) recorded in photo-thermo-refractive glass (PTR) is studied under the irradiation of a continuous-wave fiber laser with flux of 1274 W/cm2. Dependence of temperature characteristics of VBGs prepared by different crystallization temperatures is presented. When temperature of VBGs rises up to 33°C, there are a 2.7% reduction and 1.59% ripple of diffraction efficiency for VBGs. The period variation caused by the thermal expansion of VBGs is used to explain the reduction of diffraction efficiency, and experimental results are in agreement with theoretical analysis.

© 2014 Optical Society of America

OCIS Codes
(090.7330) Holography : Volume gratings
(140.3330) Lasers and laser optics : Laser damage
(060.3510) Fiber optics and optical communications : Lasers, fiber

ToC Category:
Diffraction and Gratings

Original Manuscript: January 8, 2014
Revised Manuscript: March 10, 2014
Manuscript Accepted: March 24, 2014
Published: April 1, 2014

Xiang Zhang, Jiansheng Feng, Baoxing Xiong, Kuaisheng Zou, and Xiao Yuan, "Diffraction of volume Bragg gratings under high flux laser irradiation," Opt. Express 22, 8291-8297 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. O. M. Efimov, L. B. Glebov, L. N. Glebova, K. C. Richardson, V. I. Smirnov, “High-efficiency Bragg gratings in photothermorefractive glass,” Appl. Opt. 38(4), 619–627 (1999). [CrossRef] [PubMed]
  2. X. Zhang, X. Yuan, S. Wu, J. S. Feng, K. Zou, G. Zhang, “Two-dimensional angular filtering by volume Bragg gratings in photothermorefractive glass,” Opt. Lett. 36(11), 2167–2169 (2011). [CrossRef] [PubMed]
  3. B. L. Volodin, S. V. Dolgy, E. D. Melnik, E. Downs, J. Shaw, V. S. Ban, “Wavelength stabilization and spectrum narrowing of high-power multimode laser diodes and arrays by use of volume Bragg gratings,” Opt. Lett. 29(16), 1891–1893 (2004). [CrossRef] [PubMed]
  4. B. Jacobsson, V. Pasiskevicius, F. Laurell, “Tunable single-longitudinal-mode ErYb:glass laser locked by a bulk glass Bragg grating,” Opt. Lett. 31(11), 1663–1665 (2006). [CrossRef] [PubMed]
  5. T. Y. Chung, A. Rapaport, V. Smirnov, L. B. Glebov, M. C. Richardson, M. Bass, “Solid-state laser spectral narrowing using a volumetric photothermal refractive Bragg grating cavity mirror,” Opt. Lett. 31(2), 229–231 (2006). [CrossRef] [PubMed]
  6. P. Jelger, F. Laurell, “Efficient narrow-linewidth volume-Bragg grating-locked Nd:fiber laser,” Opt. Express 15(18), 11336–11340 (2007). [CrossRef] [PubMed]
  7. O. M. Efimov, L. B. Glebov, S. Papernov, A. W. Schmid, “Laser-induced damage of photo-thermo-refractive glass for optical holographic element writing,” Proc. SPIE 3578, 564–575 (1999). [CrossRef]
  8. A. Jain, D. Drachenberg, O. Andrusyak, G. Venus, V. Smirnov, and L. Glebov, “Coherent and spectral beam combining of fiber lasers using volume Bragg gratings,” in Proceedings of the SPIE, Laser Technology for Defense and Security VI 7686(1), M. Dubinskii and S. G. Post, eds., 768615 (2010). [CrossRef]
  9. I. V. Ciapurin, L. B. Glebov, L. N. Glebova, V. I. Smirnov, E. V. Rotari, “Incoherent combining of 100 W Yb-fiber laser beams by PTR Bragg grating,” Proc. SPIE 4974, 209–219 (2003). [CrossRef]
  10. O. Andrusyak, I. Ciapurin, V. Smirnov, G. Venus, N. Vorobiev, L. Glebov, “External and common-cavity high spectral density beam combining of high power fiber lasers,” Proc. SPIE 6873, 687314 (2008). [CrossRef]
  11. S. Tjörnhammar, B. Jacobsson, V. Pasiskevicius, F. Laurell, “Thermal limitations of volume Bragg gratings used in lasers for spectral control,” J. Opt. Soc. Am. B 30(6), 1402–1409 (2013). [CrossRef]
  12. O. Andrusyak, V. Smirnov, G. Venus, V. Rotar, L. Glebov, “Spectral combining and coherent coupling of lasers by volume Bragg gratings,” IEEE J. Sel. Top. Quantum Electron. 15(2), 344–353 (2009). [CrossRef]
  13. J. Lumeau, L. Glebova, L. B. Glebov, “Influence of UV exposure on the crystallization and optical properties of photo-thermo-refractive glass,” J. Non-Cryst. Solids 354(2-9), 425–430 (2008). [CrossRef]
  14. O. G. Andrusyak, “Dense spectral beam combining with volume Bragg gratings in photo-thermo-refractive glass,” Ph.D. thesis, University of Central Florida, 2009.
  15. J. Lumeau, L. Glebova, L. B. Glebov, “Near-IR absorption in high-purity photothermorefractive glass and holographic optical elements: measurement and application for high-energy lasers,” Appl. Opt. 50(30), 5905–5911 (2011). [CrossRef] [PubMed]
  16. B. Jacobsson, V. Pasiskevicius, F. Laurell, “Single longitudinal-mode Nd-laser with a Bragg grating Fabry–Perot cavity,” Opt. Express 14(20), 9284–9292 (2006). [CrossRef] [PubMed]
  17. T. Waritanant, T.-Y. Chung, “Influence of minute self-absorption of a volume Bragg grating used as a laser mirror,” IEEE J. Quantum Electron. 47(3), 390–397 (2011). [CrossRef]
  18. L. B. Glebov, “Photosensitive glass for phase hologram recording,” Glastech. Ber. Glass Sci. Technol. 71C, 85–90 (1998).
  19. B. X. Xiong, X. Yuan, K. S. Zou, J. S. Feng, X. Zhang, G. J. Zhang, “Characteristics on the photo-thermal-refractive glass and volume Bragg gratings,” Acta Opt. Sin. 32(8), 0816001 (2012). [CrossRef]
  20. T. Cardinal, O. M. Efimov, H. G. Francois-Saint-Cyr, L. B. Glebov, L. N. Glebova, V. I. Smirnov, “Comparative study of photo-induced variations of X-ray diffraction and refractive index in photo-thermo-refractive glass,” J. Non-Cryst. Solids 325(1-3), 275–281 (2003). [CrossRef]
  21. O. M. Efimov, L. B. Glebov, V. I. Smirnov, and L. Glebova, “Process for production of high efficiency volume diffractive elements in photo-thermo-refractive glass” United States Patent 6586141(2004)

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited