OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8298–8308

Influence of lenslet number on performance of image restoration algorithms for the TOMBO imaging system

Yuan Gao, Lizhi Dong, Ping Yang, Guomao Tang, and Bing Xu  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8298-8308 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1386 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



In this paper the influence of the number of lenslets on the performance of image restoration algorithms for the thin observation module by bound optics (TOMBO) imaging system was investigated, and the lenslet number was optimized to achieve thin system and high imaging performance. Subimages with different numbers of lenslets were generated following the TOMBO observation model, and image restoration algorithms were applied to evaluate the imaging performance of the TOMBO system. The optimal lenslet number was determined via theoretical performance optimization and verified via experimental comparisons of angular resolutions of two TOMBO systems and a conventional single-lens system.

© 2014 Optical Society of America

OCIS Codes
(110.1758) Imaging systems : Computational imaging
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:
Imaging Systems

Original Manuscript: January 21, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 17, 2014
Published: April 1, 2014

Yuan Gao, Lizhi Dong, Ping Yang, Guomao Tang, and Bing Xu, "Influence of lenslet number on performance of image restoration algorithms for the TOMBO imaging system," Opt. Express 22, 8298-8308 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. J. Tanida, T. Kumagai, K. Yamada, S. Miyatake, K. Ishida, T. Morimoto, N. Kondou, D. Miyazaki, Y. Ichioka, “Thin observation module by bound optics (TOMBO): concept and experimental verification,” Appl. Opt. 40(11), 1806–1813 (2001). [CrossRef] [PubMed]
  2. J. W. Duparré, F. C. Wippermann, “Micro-optical artificial compound eyes,” Bioinspir. Biomim. 1(1), R1–R16 (2006). [CrossRef] [PubMed]
  3. D. Mendlovic, “Toward a super imaging system,” Appl. Opt. 52(4), 561–566 (2013). [CrossRef] [PubMed]
  4. K. Choi, T. J. Schulz, “Signal-processing approaches for image-resolution restoration for TOMBO imagery,” Appl. Opt. 47(10), B104–B116 (2008). [CrossRef] [PubMed]
  5. M. Shankar, R. Willett, N. Pitsianis, T. Schulz, R. Gibbons, R. Te Kolste, J. Carriere, C. Chen, D. Prather, D. Brady, “Thin infrared imaging systems through multichannel sampling,” Appl. Opt. 47(10), B1–B10 (2008). [CrossRef] [PubMed]
  6. A. V. Kanaev, D. A. Scribner, J. R. Ackerman, E. F. Fleet, “Analysis and application of multiframe superresolution processing for conventional imaging systems and lenslet arrays,” Appl. Opt. 46(20), 4320–4328 (2007). [CrossRef] [PubMed]
  7. Y. Kitamura, R. Shogenji, K. Yamada, S. Miyatake, M. Miyamoto, T. Morimoto, Y. Masaki, N. Kondou, D. Miyazaki, J. Tanida, Y. Ichioka, “Reconstruction of a high-resolution image on a compound-eye image-capturing system,” Appl. Opt. 43(8), 1719–1727 (2004). [CrossRef] [PubMed]
  8. A. Stern, B. Javidi, “Three-dimensional image sensing and reconstruction with time-division multiplexed computational integral imaging,” Appl. Opt. 42(35), 7036–7042 (2003). [CrossRef] [PubMed]
  9. R. Horisaki, S. Irie, Y. Ogura, J. Tanida, “Three-dimensional information acqusition using a compound imaging system,” Opt. Rev. 14(5), 347–350 (2007). [CrossRef]
  10. A. V. Kanaev, J. R. Ackerman, E. F. Fleet, D. A. Scribner, “TOMBO sensor with scene-independent superresolution processing,” Opt. Lett. 32(19), 2855–2857 (2007). [CrossRef] [PubMed]
  11. A. A. El-Sallam, F. Boussaid, “Spectral-based blind image restoration method for thin TOMBO imagers,” Sensors (Basel Switzerland) 8(9), 6108–6124 (2008). [CrossRef]
  12. S. Mendelowitz, I. Klapp, D. Mendlovic, “Design of an image restoration algorithm for the TOMBO imaging system,” J. Opt. Soc. Am. A 30(6), 1193–1204 (2013). [CrossRef] [PubMed]
  13. Z. Lin, H. Y. Shum, “Fundamental limits of reconstruction-based superresolution algorithms under local translation,” IEEE Trans. Pattern Anal. Mach. Intell. 26(1), 83–97 (2004). [CrossRef] [PubMed]
  14. S. Baker, T. Kanade, “Limits on super-resolution and how to break them,” IEEE Trans. Pattern Anal. Mach. Intell. 24(9), 1167–1183 (2002). [CrossRef]
  15. D. Robinson, P. Milanfar, “Statistical performance analysis of super-resolution,” IEEE Trans. Image Process. 15(6), 1413–1428 (2006). [CrossRef] [PubMed]
  16. S. Farsiu, M. D. Robinson, M. Elad, P. Milanfar, “Fast and robust multiframe super resolution,” IEEE Trans. Image Process. 13(10), 1327–1344 (2004). [CrossRef] [PubMed]
  17. S. Villena, M. Vega, S. D. Babaccan, R. Molina, A. K. Katsaggelos, “Bayesian combination of sparse and non-sparse priors in image super resolution,” Digit. Signal Process. 23(2), 530–541 (2013). [CrossRef]
  18. D. G. Lowe, “Distinctive image features from scale-invariant keypoints,” Int. J. Comput. Vis. 60(2), 91–110 (2004). [CrossRef]
  19. M. A. Fischler, R. C. Bolles, “Random sample consensus: a paradigm for model fitting with applications to image analysis and automated cartography,” Commun. ACM 24(6), 381–395 (1981). [CrossRef]
  20. M. W. Haney, “Performance scaling in flat imagers,” Appl. Opt. 45(13), 2901–2910 (2006). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited