OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8320–8332

Programming balanced optical beam splitters in white paint

Simon R. Huisman, Thomas J. Huisman, Sebastianus A. Goorden, Allard P. Mosk, and Pepijn W. H. Pinkse  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8320-8332 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (6603 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Wavefront shaping allows for ultimate control of light propagation in multiple-scattering media by adaptive manipulation of incident waves. We shine two separate wavefront-shaped beams on a layer of dry white paint to create two enhanced output spots of equal intensity. We experimentally confirm by interference measurements that the output spots are almost correlated like the two outputs of an ideal balanced beam splitter. The observed deviations from the phase behavior of an ideal beam splitter are analyzed with a transmission matrix model. Our experiments demonstrate that wavefront shaping in multiple-scattering media can be used to approximate the functionality of linear optical devices with multiple inputs and outputs.

© 2014 Optical Society of America

OCIS Codes
(290.0290) Scattering : Scattering
(290.4210) Scattering : Multiple scattering
(290.7050) Scattering : Turbid media

ToC Category:

Original Manuscript: January 23, 2014
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 21, 2014
Published: April 1, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Simon R. Huisman, Thomas J. Huisman, Sebastianus A. Goorden, Allard P. Mosk, and Pepijn W. H. Pinkse, "Programming balanced optical beam splitters in white paint," Opt. Express 22, 8320-8332 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. E. Hecht, Optics (Addison Wesley, 4, 2002).
  2. B. E. A. Saleh, M. C. Teich, Fundamentals of Photonics (Wiley-Interscience, 2, 2007).
  3. M. A. Nielsen, I. L. Chuang, Quantum Computation and Quantum Information (Cambridge University, 1, 2000).
  4. E. Knill, R. Laflamme, G. J. Milburn, “A scheme for efficient quantum computation with linear optics,” Nature 409, 46 (2001). [CrossRef] [PubMed]
  5. P. Kok, W. J. Munro, K. Nemoto, T. C. Ralph, J. P. Dowling, G. J. Millburn, “Linear optical quantum computing with photonic qubits,” Rev. Mod. Phys. 79, 135–174 (2007). [CrossRef]
  6. J. L. O’Brien, A. Furusawa, J. Vučković, “Photonic quantum technologies,” Nat. Photonics 3, 687–695 (2009). [CrossRef]
  7. I. Freund, “Looking through walls and around corners,” Physica A 168, 49–65 (1990). [CrossRef]
  8. I. M. Vellekoop, A. P. Mosk, “Focusing coherent light through opaque strongly scattering media,” Optics Lett. 32, 2309–2311 (2007). [CrossRef]
  9. A. P. Mosk, A. Lagendijk, G. Lerosey, M. Fink, “Controlling waves in space and time for imaging and focusing in complex media,” Nat. Photonics 6, 283–292 (2012). [CrossRef]
  10. I. M. Vellekoop, A. Lagendijk, A. P. Mosk, “Exploiting disorder for perfect focusing,” Nat. Photonics 4, 320–322 (2010). [CrossRef]
  11. E. G. van Putten, D. Akbulut, J. Bertolotti, W. L. Vos, A. Lagendijk, A. P. Mosk, “Scattering lens resolves sub-100 nm structures with visible light,” Phys. Rev. Lett. 106, 193905 (2011). [CrossRef] [PubMed]
  12. J. Aulbach, B. Gjonaj, P. M. Johnson, A. P. Mosk, A. Lagendijk, “Control of light transmission through opaque scattering media in space and time,” Phys. Rev. Lett. 106, 103901 (2011). [CrossRef] [PubMed]
  13. O. Katz, E. Small, Y. Bromberg, Y. Silberberg, “Focusing and compression of ultrashort pulses through scattering media,” Nat. Photonics 5, 372–377 (2011). [CrossRef]
  14. D. J. McCabe, A. Tajalli, D. R. Austin, P. Bondareff, I. A. Walmsley, S. Gigan, B. Chatel, “Spatio-temporal focussing of an ultrafast pulse through a multiply scattering medium,” Nat. Comm. 2, 447 (2011). [CrossRef]
  15. Y. Guan, O. Katz, E. Small, J. Zhou, Y. Silberberg, “Polarization control of multiply scattered light through random media by wavefront shaping,” Opt. Lett. 37, 4663–4665 (2012). [CrossRef] [PubMed]
  16. S. M. Popoff, G. Lerosey, R. Carminati, M. Fink, A. C. Boccara, S. Gigan, “Measuring the transmission matrix in optics: an approach to the study and control of light propagation in disordered media,” Phys. Rev. Lett. 104, 100601 (2010). [CrossRef] [PubMed]
  17. R. A. Campos, B. E. A. Saleh, M. C. Teich, “Quantum-mechanic lossless beam splitter: SU(2) symmetry and photon statistics,” Phys. Rev. A 40, 1371–1384 (1989). [CrossRef] [PubMed]
  18. T. Kiss, U. Herzog, U. Leonhardt, “Compensation of losses in photodetection and in quantum-state measurements,” Phys. Rev. A 52, 2433–2435 (1995). [CrossRef] [PubMed]
  19. U. Leonhardt, Measuring the Quantum State of Light (Cambridge University, 1, 1997).
  20. S. M. Barnett, J. Jeffers, A. Gatti, R. Loudon, “Quantum optics of lossy beam splitters,” Phys. Rev. A 57, 2134–2145 (1998). [CrossRef]
  21. L. Knöll, S. Scheel, E. Schmidt, D. -G. Welsch, A.V. Chizhov, “Quantum-state transformation by dispersive and absorbing four-port devices,” Phys. Rev. A 59, 4716–4726 (1999). [CrossRef]
  22. J. Jeffers, “Interference and the lossless lossy beam splitter,” J. Mod. Optic. 47, 1819–1824 (2000). [CrossRef]
  23. I. M. Vellekoop, A. P. Mosk, “Phase control algorithms for focusing light through turbid media,” Opt. Commun. 281, 3071–3080 (2008). [CrossRef]
  24. We use Matlab 2013 for creating random unitary matrices S with dimension Dim(S) using the following syntax: Random_Matrix=rand(N,N)+1i*rand(N,N); %generates uniformly distributed random complex numbers [S, r]=qr(Random Matrix); % S is the output of an orthogonal-triangular decomposition.
  25. N. P. Puente, E. I. Chaikina, S. Herath, A. Yamilov, “Fabrication, characterization and theoretical analysis of controlled disorder in the core of the optical fibers,” Appl. Optics 50, 802–810 (2011). [CrossRef]
  26. S. R. Huisman, N. Jain, S. A. Babichev, F. Vewinger, A. N. Zhang, S. H. Youn, A. I. Lvovsky, “Instant single-photon Fock state tomography,” Opt. Lett. 34, 2739–2741 (2009). [CrossRef] [PubMed]
  27. T. J. Huisman, S. R. Huisman, A. P. Mosk, P. W. H. Pinkse, “Controlling single-photon Fock-state propagation through opaque scattering materials,” Appl. Phys. B. (2013). [CrossRef]
  28. P. Lodahl, A. P. Mosk, A. Lagendijk, “Spatial quantum correlations in multiple scattered light,” Phys. Rev. Lett. 95, 173901 (2005). [CrossRef] [PubMed]
  29. S. Smolka, A. Huck, U. L. Andersen, A. Lagendijk, P. Lodahl, “Observation of spatial quantum correlations induced by multiple scattering of nonclassical light,” Phys. Rev. Lett. 102, 193901 (2009). [CrossRef] [PubMed]
  30. Y. Bromberg, Y. Lahini, R. Morandotti, Y. Silberberg, “Quantum and classical correlations in waveguide lattices,” Phys. Rev. Lett. 102, 253904 (2009). [CrossRef] [PubMed]
  31. A. Peruzzo, M. Lobino, J. C. F. Matthews, N. Matsuda, A. Politi, K. Poulios, X. -Q. Zhou, Y. Lahini, N. Ismail, K. Wörhoff, Y. Bromberg, Y. Silberberg, M. G. Thompson, J. L. O’Brien, “Quantum walks of correlated photons,” Science 329, 1500–1503 (2010). [CrossRef] [PubMed]
  32. Y. Lahini, Y. Bromberg, D. N. Christodoulides, Y. Silberberg, “Quantum correlations in Anderson localization of indistinguishable particles,” Phys. Rev. Lett. 105, 163905 (2010). [CrossRef]
  33. J. R. Ott, N. A. Mortensen, P. Lodahl, “Quantum interference and entanglement induced by multiple scattering of light,” Phys. Rev. Lett. 105, 090501 (2010). [CrossRef] [PubMed]
  34. W. H. Peeters, J. J. D. Moerman, M. P. van Exter, “Observation of two-photon speckle patterns,” Phys. Rev. Lett. 104, 173601 (2010). [CrossRef] [PubMed]
  35. D. Bonneau, M. Lobino, P. Jiang, C. M. Natarajan, M. G. Tanner, R. H. Hadfield, S. N. Dorenbos, V. Zwiller, M. G. Thompson, J. L. O’Brien, “Fast path and polarization manipulation of telecom wavelength single photons in lithium niobate waveguide devices,” Phys. Rev. Lett. 108, 053601 (2012). [CrossRef] [PubMed]
  36. S. R. Huisman, Light Control with Ordered and Disordered Nanophotonic Media (PhD. thesis, University of Twente, 2013).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited