OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8339–8348

Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation

Jong-Bum You, Wook-Jae Lee, Dongshik Won, and Kyoungsik Yu  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8339-8348 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2911 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



The cavity resonant properties of planar metal-dielectric layered structures with optically dense dielectric media are studied with the aim of realizing omnidirectional and polarization-insensitive operation. The angle-dependent coupling between free-space and cavity modes are revealed to be a key leverage factor in realizing nearly perfect absorbers well-matched to a wide range of incidence angles. We establish comprehensive analyses of the relationship between the structural and optical properties by means of theoretical modeling with numerical simulation results. The presented work is expected to provide a simple and cost-effective solution for light absorption and detection applications that exploit planar metal-dielectric optical devices.

© 2014 Optical Society of America

OCIS Codes
(230.4170) Optical devices : Multilayers
(230.5750) Optical devices : Resonators
(310.3915) Thin films : Metallic, opaque, and absorbing coatings
(310.4165) Thin films : Multilayer design

ToC Category:
Thin Films

Original Manuscript: February 14, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: March 26, 2014
Published: April 1, 2014

Jong-Bum You, Wook-Jae Lee, Dongshik Won, and Kyoungsik Yu, "Multiband perfect absorbers using metal-dielectric films with optically dense medium for angle and polarization insensitive operation," Opt. Express 22, 8339-8348 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Scalora, M. J. Bloemer, A. S. Pethel, J. P. Dowling, C. M. Bowden, A. S. Manka, “Transparent, metallo-dielectric, one-dimensional, photonic band-gap structures,” J. Appl. Phys. 83(5), 2377 (1998). [CrossRef]
  2. K. Aydin, V. E. Ferry, R. M. Briggs, H. A. Atwater, “Broadband polarization-independent resonant light absorption using ultrathin plasmonic super absorbers,” Nat Commun 2, 517 (2011). [CrossRef] [PubMed]
  3. Y. Q. Ye, Y. Jin, S. He, “Omnidirectional, polarization-insensitive and broadband thin absorber in the terahertz regime,” J. Opt. Soc. Am. B 27(3), 498–504 (2010). [CrossRef]
  4. X. Liu, T. Starr, A. F. Starr, W. J. Padilla, “Infrared spatial and frequency selective metamaterial with near-unity absorbance,” Phys. Rev. Lett. 104(20), 207403 (2010). [CrossRef] [PubMed]
  5. S. Shu, Z. Li, Y. Y. Li, “Triple-layer Fabry-Perot absorber with near-perfect absorption in visible and near-infrared regime,” Opt. Express 21(21), 25307–25315 (2013). [CrossRef] [PubMed]
  6. M. A. Kats, D. Sharma, J. Lin, P. Genevet, R. Blanchard, Z. Yang, M. M. Qazilbash, D. Basov, S. Ramanathan, F. Capasso, “Ultra-thin perfect absorber employing a tunable phase change material,” Appl. Phys. Lett. 101(22), 221101 (2012). [CrossRef]
  7. D. Y. Lei, H. C. Ong, “Enhanced forward emission from ZnO via surface plasmons,” Appl. Phys. Lett. 91(21), 211107 (2007). [CrossRef]
  8. F. Guo, B. Yang, Y. Yuan, Z. Xiao, Q. Dong, Y. Bi, J. Huang, “A nanocomposite ultraviolet photodetector based on interfacial trap-controlled charge injection,” Nat. Nanotechnol. 7(12), 798–802 (2012). [CrossRef] [PubMed]
  9. H. A. Atwater, A. Polman, “Plasmonics for improved photovoltaic devices,” Nat. Mater. 9(3), 205–213 (2010). [CrossRef] [PubMed]
  10. M. A. Kats, R. Blanchard, P. Genevet, F. Capasso, “Nanometre optical coatings based on strong interference effects in highly absorbing media,” Nat. Mater. 12(1), 20–24 (2012). [CrossRef] [PubMed]
  11. H. Shin, M. F. Yanik, S. Fan, R. Zia, M. L. Brongersma, “Omnidirectional resonance in a metal–dielectric–metal geometry,” Appl. Phys. Lett. 84(22), 4421 (2004). [CrossRef]
  12. J. S. Q. Liu, M. L. Brongersma, “Omnidirectional light emission via surface plasmon polaritons,” Appl. Phys. Lett. 90(9), 091116 (2007). [CrossRef]
  13. A. Hosseini, Y. Massoud, “Optical range microcavities and filters using multiple dielectric layers in metal-insulator-metal structures,” J. Opt. Soc. Am. A 24(1), 221–224 (2007). [CrossRef] [PubMed]
  14. J. Zhang, W. Bai, L. Cai, X. Chen, G. Song, Q. Gan, “Omnidirectional absorption enhancement in hybrid waveguide-plasmon system,” Appl. Phys. Lett. 98(26), 261101 (2011). [CrossRef]
  15. T. V. Teperik, F. J. García de Abajo, A. G. Borisov, M. Abdelsalam, P. N. Bartlett, Y. Sugawara, J. J. Baumberg, “Omnidirectional absorption in nanostructured metal surfaces,” Nat. Photonics 2(5), 299–301 (2008). [CrossRef]
  16. P. Bouchon, C. Koechlin, F. Pardo, R. Haïdar, J.-L. Pelouard, “Wideband omnidirectional infrared absorber with a patchwork of plasmonic nanoantennas,” Opt. Lett. 37(6), 1038–1040 (2012). [CrossRef] [PubMed]
  17. M. Pu, C. Hu, M. Wang, C. Huang, Z. Zhao, C. Wang, Q. Feng, X. Luo, “Design principles for infrared wide-angle perfect absorber based on plasmonic structure,” Opt. Express 19(18), 17413–17420 (2011). [CrossRef] [PubMed]
  18. W.-J. Lee, J.-B. You, K. Kwon, B. Park, K. Yu, “Direction-selective emission with small angular divergence from a subwavelength aperture using radiative waveguide modes,” Phys. Rev. B 87(12), 125108 (2013). [CrossRef]
  19. E. D. Palik, Handbook of Optical Constants of Solids (Academic, 1985), Vol. 1.
  20. M. A. Gilmore, B. L. Johnson, “Forbidden guided-wave plasmon polaritons in coupled thin films,” J. Appl. Phys. 93(8), 4497–4504 (2003). [CrossRef]
  21. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).
  22. T. J. Seok, A. Jamshidi, M. Kim, S. Dhuey, A. Lakhani, H. Choo, P. J. Schuck, S. Cabrini, A. M. Schwartzberg, J. Bokor, E. Yablonovitch, M. C. Wu, “Radiation engineering of optical antennas for maximum field enhancement,” Nano Lett. 11(7), 2606–2610 (2011). [CrossRef] [PubMed]
  23. M. De Zoysa, T. Asano, K. Mochizuki, A. Oskooi, T. Inoue, S. Noda, “Conversion of broadband to narrowband thermal emission through energy recycling,” Nat. Photonics 6(8), 535–539 (2012). [CrossRef]
  24. R. A. Soref, B. R. Bennett, “Electrooptical effects in silicon,” IEEE J. Quantum Electron. 23(1), 123–129 (1987). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited