OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8376–8382

Photolithographic patterning at sub-micrometer scale using a three-dimensional soft photo-mask with application on localized surface plasma resonance

Yu-Zen Chen, Chun-Ying Wu, and Yung-Chun Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8376-8382 (2014)
http://dx.doi.org/10.1364/OE.22.008376


View Full Text Article

Enhanced HTML    Acrobat PDF (1684 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

This paper presents a new method for fabricating arrayed metallic nano-structures with sub-micrometer line-widths over large patterning area sizes. It utilizes a soft mold containing arrayed surface micro-pyramids. A carbon-black photo-resist (PR) coating method is developed which can convert the soft mold into a photo-mask. This three-dimensional photo-mask is then applied for photolithographic ultraviolet (UV) patterning. In conjunction with standard metal lift-off process, arrayed metallic nano-structures are formed on glass substrates. A finite element simulation software is used to analyze the underlying mechanism of UV patterning using this new type of 3D photo-mask. The localized surface plasma resonance (LSPR) effects of the fabricated nano-structures are investigated both experimentally and theoretically. Good agreements are observed.

© 2014 Optical Society of America

OCIS Codes
(110.4235) Imaging systems : Nanolithography
(220.4241) Optical design and fabrication : Nanostructure fabrication

ToC Category:
Plasmonics

History
Original Manuscript: February 6, 2014
Revised Manuscript: March 18, 2014
Manuscript Accepted: March 18, 2014
Published: April 1, 2014

Citation
Yu-Zen Chen, Chun-Ying Wu, and Yung-Chun Lee, "Photolithographic patterning at sub-micrometer scale using a three-dimensional soft photo-mask with application on localized surface plasma resonance," Opt. Express 22, 8376-8382 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8376


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]
  2. F. Hallermann, C. Rockstuhl, S. Fahr, G. Seifert, S. Wackerow, H. Graener, G. V. Plessen, F. Lederer, “On the use of localized plasmon polaritons in solar cells,” Phys. Status Solidi 205(12), 2844–2861 (2008). [CrossRef]
  3. B. Auguié, W. L. Barnes, “Collective resonances in gold nanoparticle arrays,” Phys. Rev. Lett. 101(14), 143902 (2008). [CrossRef] [PubMed]
  4. N. Felidj, J. Aubard, G. Levi, J. R. Krenn, G. Schider, A. Leitner, F. R. Aussenegg, “Enhanced substrate-induced coupling in two-dimensional gold nanoparticle arrays,” Phys. Rev. B 66(24), 245407 (2002). [CrossRef]
  5. J. Stodolka, D. Nau, M. Frommberger, C. Zanke, H. Giessen, E. Quandt, “Fabrication of two-dimensional hybrid photonic crystals utilizing electron beam lithography,” Microelectron. Eng. 78–79, 442–447 (2005). [CrossRef]
  6. Y. Chu, E. Schonbrun, T. Yang, K. B. Crozier, “Experimental observation of narrow surface plasmon resonancesin gold nanoparticle arrays,” Appl. Phys. Lett. 93(18), 181108 (2008). [CrossRef]
  7. Y. C. Lee, C. Y. Chiu, “Micro-/nano-lithography based on the contact transfer of thin film and mask embedded etching,” J. Micromech. Microeng. 18(7), 075013 (2008). [CrossRef]
  8. Y. Xia, J. A. Rogers, K. E. Paul, G. M. Whitesides, “Unconventional methods for fabricating and patterning nanostructures,” Chem. Rev. 99(7), 1823–1848 (1999). [CrossRef] [PubMed]
  9. W. Srituravanich, N. Fang, C. Sun, Q. Luo, X. Zhang, “Plasmonic Nanolithography,” Nano Lett. 4(6), 1085–1088 (2004). [CrossRef]
  10. L. Wang, S. M. Uppuluri, E. X. Jin, X. Xu, “Nanolithography using high transmission nanoscale bowtie apertures,” Nano Lett. 6(3), 361–364 (2006). [CrossRef] [PubMed]
  11. Y. Kim, H. Jung, S. Kim, J. Jang, J. Y. Lee, J. W. Hahn, “Accurate near-field lithography modeling and quantitative mapping of the near-field distribution of a plasmonic nanoaperture in a metal,” Opt. Express 19(20), 19296–19309 (2011). [CrossRef] [PubMed]
  12. G. T. A. Kovacs, N. I. Maluf, K. E. Petersen, “Bulk micromachining of silicon,” Proc. IEEE 86(8), 1536–1551 (1998). [CrossRef]
  13. I. Barycka, I. Zubel, “Silicon anisotropic etching in KOH-isopropanol etchant,” Sens. Actuator A-Phys. 48(3), 229–238 (1995). [CrossRef]
  14. R. A. Norwood, L. A. Whitney, “Rapid and accurate measurements of photoresist refractive index dispersion using the prism coupling method,” Proc. SPIE 2725, 273–280 (1996). [CrossRef]
  15. http://www.minuta.co.kr/products/products_mold_template.html (Accessed February 5, 2014)
  16. http://www.everlightchemical-ecbu.com/EN/product_detail.asp?seq=70 (Accessed February 5, 2014)
  17. M. Bechelany, X. Maeder, J. Riesterer, J. Hankache, D. Lerose, S. Christiansen, J. Michler, L. Philippe, “Synthesis Mechanisms of Organized Gold Nanoparticles: Influence of Annealing Temperature and Atmosphere,” Cryst. Growth Des. 10(2), 587–596 (2010). [CrossRef]
  18. C. H. Chen, Y. C. Lee, “Fabrication of metallic micro/nano-particles by surface patterning and pulsed laser annealing,” Thin Solid Films 518(17), 4786–4790 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited