OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8383–8395

Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer

Hansik Yun, Seung-Yeol Lee, Kyoung-Youm Kim, Il-Min Lee, and Byoungho Lee  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8383-8395 (2014)
http://dx.doi.org/10.1364/OE.22.008383


View Full Text Article

Enhanced HTML    Acrobat PDF (5226 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Hybrid characteristics of propagating surface plasmons (PSPs) and localized surface plasmons (LSPs) appear at a combined structure of a thin silver (Ag) layer and silver core/silica shell nanocubes (AgNC@SiO2s) in the Kretschmann configuration, because the resonant condition of PSPs on the thin Ag layer is significantly modified by LSPs of the AgNC@SiO2s. We investigate theoretically and experimentally that due to the hybrid property, the slope and position of the minimum reflectance band can be controlled on a graph of incident angle versus wavelength of reflected light, by changing structural parameters. The hybrid properties of PSPs and LSPs have a potential to simultaneously detect surface plasmon resonance signals and fluorescence images.

© 2014 Optical Society of America

OCIS Codes
(240.6680) Optics at surfaces : Surface plasmons
(160.4236) Materials : Nanomaterials
(250.5403) Optoelectronics : Plasmonics

ToC Category:
Plasmonics

History
Original Manuscript: February 14, 2014
Revised Manuscript: March 22, 2014
Manuscript Accepted: March 24, 2014
Published: April 1, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Hansik Yun, Seung-Yeol Lee, Kyoung-Youm Kim, Il-Min Lee, and Byoungho Lee, "Hybrid states of propagating and localized surface plasmons at silver core/silica shell nanocubes on a thin silver layer," Opt. Express 22, 8383-8395 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8383


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H. Raether, Surface Plasmons on Smooth and Rough Surfaces and on Gratings (Springer, 1988).
  2. S. Maier, Plasmonics: Fundamentals and Applications (Springer, 2007).
  3. S. I. Bozhevolnyi, V. S. Volkov, E. Devaux, T. W. Ebbesen, “Channel plasmon-polariton guiding by subwavelength metal grooves,” Phys. Rev. Lett. 95(4), 046802 (2005). [CrossRef] [PubMed]
  4. R. F. Oulton, V. J. Sorger, T. Zentgraf, R.-M. Ma, C. Gladden, L. Dai, G. Bartal, X. Zhang, “Plasmon lasers at deep subwavelength scale,” Nature 461(7264), 629–632 (2009). [CrossRef] [PubMed]
  5. M. I. Stockman, “Nanofocusing of optical energy in tapered plasmonic waveguides,” Phys. Rev. Lett. 93(13), 137404 (2004). [CrossRef] [PubMed]
  6. K. L. Kelly, E. Coronado, L. L. Zhao, G. C. Schatz, “The optical properties of metal nanoparticles: the influence of size, shape, and dielectric environment,” J. Phys. Chem. B 107(3), 668–677 (2003). [CrossRef]
  7. A. G. Curto, G. Volpe, T. H. Taminiau, M. P. Kreuzer, R. Quidant, N. F. van Hulst, “Unidirectional emission of a quantum dot coupled to a nanoantenna,” Science 329(5994), 930–933 (2010). [CrossRef] [PubMed]
  8. J.-L. Wu, F.-C. Chen, Y.-S. Hsiao, F.-C. Chien, P. Chen, C.-H. Kuo, M. H. Huang, C.-S. Hsu, “Surface plasmonic effects of metallic nanoparticles on the performance of polymer bulk heterojunction solar cells,” ACS Nano 5(2), 959–967 (2011). [CrossRef] [PubMed]
  9. B. Hötzer, I. L. Medintz, N. Hildebrandt, “Fluorescence in nanobiotechnology: sophisticated fluorophores for novel applications,” Small 8(15), 2297–2326 (2012). [CrossRef] [PubMed]
  10. J. Liu, Y. Lu, “Adenosine-dependent assembly of aptazyme-functionalized gold nanoparticles and its application as a colorimetric biosensor,” Anal. Chem. 76(6), 1627–1632 (2004). [CrossRef] [PubMed]
  11. G. Peng, U. Tisch, O. Adams, M. Hakim, N. Shehada, Y. Y. Broza, S. Billan, R. Abdah-Bortnyak, A. Kuten, H. Haick, “Diagnosing lung cancer in exhaled breath using gold nanoparticles,” Nat. Nanotechnol. 4(10), 669–673 (2009). [CrossRef] [PubMed]
  12. O. G. Tovmachenko, C. Graf, D. J. van den Heuvel, A. van Blaaderen, H. C. Gerritsen, “Fluorescence enhancement by metal-core/silica-shell nanoparticles,” Adv. Mater. 18(1), 91–95 (2006). [CrossRef]
  13. F. Tam, G. P. Goodrich, B. R. Johnson, N. J. Halas, “Plasmonic enhancement of molecular fluorescence,” Nano Lett. 7(2), 496–501 (2007). [CrossRef] [PubMed]
  14. J. Cesario, R. Quidant, G. Badenes, S. Enoch, “Electromagnetic coupling between a metal nanoparticle grating and a metallic surface,” Opt. Lett. 30(24), 3404–3406 (2005). [CrossRef] [PubMed]
  15. N. Papanikolaou, “Optical properties of metallic nanoparticle arrays on a thin metallic film,” Phys. Rev. B 75(23), 235426 (2007). [CrossRef]
  16. Y. Chu, K. B. Crozier, “Experimental study of the interaction between localized and propagating surface plasmons,” Opt. Lett. 34(3), 244–246 (2009). [CrossRef] [PubMed]
  17. C. Hu, L. Liu, Z. Zhao, X. Chen, X. Luo, “Mixed plasmons coupling for expanding the bandwidth of near-perfect absorption at visible frequencies,” Opt. Express 17(19), 16745–16749 (2009). [CrossRef] [PubMed]
  18. A. Moreau, C. Ciracì, J. J. Mock, R. T. Hill, Q. Wang, B. J. Wiley, A. Chilkoti, D. R. Smith, “Controlled-reflectance surfaces with film-coupled colloidal nanoantennas,” Nature 492(7427), 86–89 (2012). [CrossRef] [PubMed]
  19. M. K. Kinnan, G. Chumanov, “Surface enhanced Raman scattering from silver nanoparticle arrays on silver mirror films: plasmon-induced electronic coupling as the enhancement mechanism,” J. Phys. Chem. C 111(49), 18010–18017 (2007). [CrossRef]
  20. H. Yun, I.-M. Lee, S.-Y. Lee, K.-Y. Kim, B. Lee, “Intermediate plasmonic characteristics in a quasi-continuous metallic monolayer,” Sci Rep 4, 3696 (2014). [CrossRef] [PubMed]
  21. W. Weibull, “A statistical distribution function of wide applicability,” J. Appl. Mech. 18, 293–297 (1951).
  22. Z. Fang, B. R. Patterson, M. E. J. Turner., “Modeling particle size distributions by the Weibull distribution function,” Mater. Charact. 31(3), 177–182 (1993). [CrossRef]
  23. H. Kim, I.-M. Lee, B. Lee, “Extended scattering-matrix method for efficient full parallel implementation of rigorous coupled-wave analysis,” J. Opt. Soc. Am. A 24(8), 2313–2327 (2007). [CrossRef] [PubMed]
  24. H. Kim, J. Park, and B. Lee, Fourier Modal Method and Its Applications in Computational Nanophotonics (CRC, 2012).
  25. Q. Zhang, W. Li, C. Moran, J. Zeng, J. Chen, L.-P. Wen, Y. Xia, “Seed-mediated synthesis of Ag nanocubes with controllable edge lengths in the range of 30-200 nm and comparison of their optical properties,” J. Am. Chem. Soc. 132(32), 11372–11378 (2010). [CrossRef] [PubMed]
  26. J. Jung, T. Søndergaard, S. I. Bozhevolnyi, “Gap plasmon-polariton nanoresonators: scattering enhancement and launching of surface plasmon polaritons,” Phys. Rev. B 79(3), 035401 (2009). [CrossRef]
  27. D. Cheng, Q.-H. Xu, “Separation distance dependent fluorescence enhancement of fluorescein isothiocyanate by silver nanoparticles,” Chem. Commun. (Camb.) 2007(3), 248–250 (2007). [CrossRef] [PubMed]
  28. F. Moreno, B. García-Cámara, J. M. Saiz, F. González, “Interaction of nanoparticles with substrates: effects on the dipolar behaviour of the particles,” Opt. Express 16(17), 12487–12504 (2008). [CrossRef] [PubMed]
  29. H. Shen, P. Bienstman, B. Maes, “Plasmonic absorption enhancement in organic solar cells with thin active layers,” J. Appl. Phys. 106(7), 073109 (2009). [CrossRef]
  30. F. Liu, W. Xie, Q. Xu, Y. Liu, K. Cui, X. Feng, W. Zhang, Y. Huang, “Plasmonic enhanced optical absorption in organic solar cells with metallic nanoparticles,” IEEE Photonics J. 5(4), 8400509 (2013). [CrossRef]
  31. E. Hutter, J. H. Fendler, “Exploitation of localized surface plasmon resonance,” Adv. Mater. 16(19), 1685–1706 (2004). [CrossRef]
  32. R. W. Wood, “On a remarkable case of uneven distribution of light in a diffraction grating spectrum,” Philos. Mag. 4(21), 396–402 (1902). [CrossRef]
  33. A. Hessel, A. A. Oliner, “A new theory of Wood’s anomalies on optical gratings,” Appl. Opt. 4(10), 1275–1297 (1965). [CrossRef]
  34. E. Ringe, J. M. McMahon, K. Sohn, C. Cobley, Y. Xia, J. Huang, G. C. Schatz, L. D. Marks, R. P. Van Duyne, “Unraveling the effects of size, composition, and substrate on the localized surface plasmon resonance frequencies of gold and silver nanocubes: a systematic single-particle approach,” J. Phys. Chem. C 114(29), 12511–12516 (2010). [CrossRef]
  35. B. Gao, G. Arya, A. R. Tao, “Self-orienting nanocubes for the assembly of plasmonic nanojunctions,” Nat. Nanotechnol. 7(7), 433–437 (2012). [CrossRef] [PubMed]
  36. A. Ghoshal, I. Divliansky, P. G. Kik, “Experimental observation of mode-selective anticrossing in surface-plasmon-coupled metal nanoparticle arrays,” Appl. Phys. Lett. 94(17), 171108 (2009). [CrossRef]
  37. P. Ding, E. Liang, G. Cai, W. Hu, C. Fan, Q. Xue, “Dual-band perfect absorption and field enhancement by interaction between localized and propagating surface plasmons in optical metamaterials,” J. Opt. 13(7), 075005 (2011). [CrossRef]
  38. A. R. Siekkinen, J. M. McLellan, J. Chen, Y. Xia, “Rapid synthesis of small silver nanocubes by mediating polyol reduction with a trace amount of sodium sulfide or sodium hydrosulfide,” Chem. Phys. Lett. 432(4-6), 491–496 (2006). [CrossRef] [PubMed]
  39. C. Graf, D. L. J. Vossen, A. Imhof, A. van Blaaderen, “A general method to coat colloidal particles with silica,” Langmuir 19(17), 6693–6700 (2003). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited