OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8438–8450

Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM)

M. W. Gramlich, J. Bae, R. C. Hayward, and J. L. Ross  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8438-8450 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (3448 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



High-resolution fluorescence techniques that provide spatial resolution below the diffraction limit are attractive new methods for structural characterization of nanostructured materials. For the first time, we apply the super-resolution technique of Stochastic Optical Reconstruction Microscopy (STORM), to characterize nanoscale structures within polymer blend films. The STORM technique involves temporally separating the fluorescence signals from individual labeled polymers, allowing their positions to be localized with high accuracy, yielding a high-resolution composite image of the material. Here, we describe the application of the technique to demixed blend films of polystyrene (PS) and poly(methyl methacrylate) (PMMA), and find that STORM provides comparable structural characteristics as those determined by Atomic Force Microscopy (AFM) and scanning electron microscopy (SEM), but with all of the advantages of a far-field optical technique

© 2014 Optical Society of America

OCIS Codes
(180.2520) Microscopy : Fluorescence microscopy
(160.1245) Materials : Artificially engineered materials
(110.3010) Imaging systems : Image reconstruction techniques

ToC Category:

Original Manuscript: December 30, 2013
Revised Manuscript: February 4, 2014
Manuscript Accepted: February 5, 2014
Published: April 2, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

M. W. Gramlich, J. Bae, R. C. Hayward, and J. L. Ross, "Fluorescence imaging of nanoscale domains in polymer blends using stochastic optical reconstruction microscopy (STORM)," Opt. Express 22, 8438-8450 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Born and E. Wolf, Principles of optics: electromagnetic theory of propagation, interference and diffraction of light, (Cambridge University Press, Cambridge, 1999).
  2. A. Neumann, Y. Kuznetsova, S. R. J. Brueck, “Structured illumination for the extension of imaging interferometric microscopy,” Opt. Express 16(10), 6785–6793 (2008). [CrossRef] [PubMed]
  3. T. R. Hillman, T. Gutzler, S. A. Alexandrov, D. D. Sampson, “High-resolution, wide-field object reconstruction with synthetic aperture Fourier holographic optical microscopy,” Opt. Express 17(10), 7873–7892 (2009). [CrossRef] [PubMed]
  4. T. Zhang, Y. Ruan, G. Maire, D. Sentenac, A. Talneau, K. Belkebir, P. C. Chaumet, A. Sentenac, “Full-polarized Tomographic Diffraction Microscopy Achieves a Resolution about One-Fourth of the Wavelength,” Phys. Rev. Lett. 111(24), 243904 (2013). [CrossRef] [PubMed]
  5. K. Lee, H. D. Kim, K. Kim, Y. Kim, T. R. Hillman, B. Min, Y. Park, “Synthetic Fourier transform light scattering,” Opt. Express 21(19), 22453–22463 (2013). [CrossRef] [PubMed]
  6. S. Arhab, G. Soriano, Y. Ruan, G. Maire, A. Talneau, D. Sentenac, P. C. Chaumet, K. Belkebir, H. Giovannini, “Nanometric Resolution with Far-Field Optical Profilometry,” Phys. Rev. Lett. 111(5), 053902 (2013). [CrossRef] [PubMed]
  7. C. G. Galbraith, J. A. Galbraith, “Super-resolution microscopy at a glance,” J. Cell Sci. 124(10), 1607–1611 (2011). [CrossRef] [PubMed]
  8. M. Bates, T. R. Blosser, X. Zhuang, “Short-Range Spectroscopy Ruler Based on a Single-Molecule Optical Switch,” Phys. Rev. Lett. 94(10), 108101 (2005). [CrossRef]
  9. M. J. Rust, M. Bates, X. W. Zhuang, “Sub-diffraction-limit imaging by stochastic optical reconstruction microscopy (STORM),” Nat. Methods 3(10), 793–796 (2006). [CrossRef] [PubMed]
  10. J. Fölling, M. Bossi, H. Bock, R. Medda, C. A. Wurm, B. Hein, S. Jakobs, C. Eggeling, S. W. Hell, “Fluorescence nanoscopy by ground-state depletion and single-molecule return,” Nat. Methods 5(11), 943–945 (2008). [CrossRef] [PubMed]
  11. G. T. Dempsey, J. C. Vaughan, K. H. Chen, M. Bates, X. Zhuang, “Evaluation of fluorophores for optimal performance in localization-based super-resolution imaging,” Nat. Methods 8(12), 1027–1036 (2011). [CrossRef] [PubMed]
  12. E. Betzig, G. H. Patterson, R. Sougrat, O. W. Lindwasser, S. Olenych, J. S. Bonifacino, M. W. Davidson, J. Lippincott-Schwartz, H. F. Hess, “Imaging Intracellular Fluorescent Proteins at Nanometer Resolution,” Science 313(5793), 1642–1645 (2006). [CrossRef] [PubMed]
  13. S. T. Hess, T. P. K. Girirajan, M. D. Mason, “Ultra-High Resolution Imaging by Fluorescence Photoactivation Localization Microscopy,” Biophys. J. 91(11), 4258–4272 (2006). [CrossRef] [PubMed]
  14. S. W. Hell, J. Wichmann, “Breaking the diffraction resolution limit by stimulated emission: stimulated-emission-depletion fluorescence microscopy,” Opt. Lett. 19(11), 780–782 (1994). [CrossRef] [PubMed]
  15. S. W. Hell, “Far-field optical nanoscopy,” Science 316(5828), 1153–1158 (2007). [CrossRef] [PubMed]
  16. G. Moneron, R. Medda, B. Hein, A. Giske, V. Westphal, S. W. Hell, “Fast STED microscopy with continuous wave fiber lasers,” Opt. Express 18(2), 1302–1309 (2010). [CrossRef] [PubMed]
  17. S. W. Hell, “Fluorescent Dyes Used in STED microscopy,” http://nanobiophotonics.mpibpc.mpg.de/old/dyes/ (2014).
  18. C. K. Ullal, R. Schmidt, S. W. Hell, A. Egner, “Block Copolymer Nanostructures Mapped by Far-Field Optics,” Nano Lett. 9(6), 2497–2500 (2009). [CrossRef] [PubMed]
  19. J. L. Ross and R. Dixit, Methods in Cell Biology, (Elsevier, 2010), Chap. 26.
  20. S. A. Jones, S.-H. Shim, J. He, X. Zhuang, “Fast, three-dimensional super-resolution imaging of live cells,” Nat. Methods 8(6), 499–505 (2011). [CrossRef] [PubMed]
  21. S. W. Hell, “Microscopy and its focal switch,” Nat. Methods 6(1), 24–32 (2009). [CrossRef] [PubMed]
  22. B. Huang, W. Wang, M. Bates, X. Zhuang, “Three-Dimensional Super-Resolution Imaging by Stochastic Optical Reconstruction Microscopy,” Science 319(5864), 810–813 (2008). [CrossRef] [PubMed]
  23. R. Henriques, M. Lelek, E. F. Fornasiero, F. Valtorta, C. Zimmer, M. M. Mhlanga, “QuickPALM: 3D real-time photoactivation nanoscopy image processing in ImageJ,” Nat. Methods 7(5), 339–340 (2010). [CrossRef] [PubMed]
  24. C. A. Schneider, W. S. Rasband, K. W. Eliceiri, “NIH Image to ImageJ: 25 years of image analysis,” Nat. Methods 9(7), 671–675 (2012). [CrossRef] [PubMed]
  25. F. Huang, S. L. Schwartz, J. M. Byars, K. A. Lidke, “Simultaneous multiple-emitter fitting for single molecule super-resolution imaging,” Biomed. Opt. Express 2(5), 1377–1393 (2011). [CrossRef] [PubMed]
  26. H. T. Ho, M. E. Levere, S. Pascual, V. Montembault, J. C. Soutif, L. Fontaine, “Phosphites as alternative coreagents for the one-pot aminolysis/thiol-ene synthesis of maleimide-functionalized RAFT polymers,” J. Polym. Sci. A Polym. Chem. 50(8), 1657–1661 (2012). [CrossRef]
  27. S. H. Lee, M. Baday, M. Tjioe, P. D. Simonson, R. Zhang, E. Cai, P. R. Selvin, “Using fixed fiduciary markers for stage drift correction,” Opt. Express 20(11), 12177–12183 (2012). [CrossRef] [PubMed]
  28. L. Sung, A. Karim, J. F. Douglas, C. C. Han, “Dimensional crossover in the phase separation kinetics of thin polymer blend films,” Phys. Rev. Lett. 76(23), 4368–4371 (1996). [CrossRef] [PubMed]
  29. J. Wagner, J. M. Yeomans, “Breakdown of Scale Invariance in the Coarsening of Phase-Separating Binary Fluids,” Phys. Rev. Lett. 80(7), 1429–1432 (1998). [CrossRef]
  30. S. Walheim, M. Böltau, J. Mlynek, G. Krausch, U. Steiner, “Structure Formation via Polymer Demixing in Spin-Cast Films,” Macromolecules 30(17), 4995–5003 (1997). [CrossRef]
  31. L. Li, X. Shen, S. W. Hong, R. C. Hayward, T. P. Russell, “Fabrication of Co-continuous Nanostructured and Porous Polymer Membranes: Spinodal Decomposition of Homopolymer and Random Copolymer Blends,” Angew. Chem. Int. Ed. Engl. 51(17), 4089–4094 (2012). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Supplementary Material

» Media 1: AVI (3595 KB)     

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited