OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8451–8459

Feedback tolerance of DFB laser for silicon photonics packaging

Seiji Takeda and Shigeru Nakagawa  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8451-8459 (2014)
http://dx.doi.org/10.1364/OE.22.008451


View Full Text Article

Enhanced HTML    Acrobat PDF (1630 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Silicon photonics packaging without optical isolator is of significant importance to realize low fabrication cost and small device size. In this report, impact of external feedback on DFB laser performance is investigated both theoretically and experimentally. Dynamic transfer matrix method and rate equation model are coupled to describe the dynamic interaction between optical field and carriers in a DFB structure under the feedback by external reflection. The calculation model exhibits laser spectrum splits and output intensity fluctuates with increase of the degree of external feedback, in good agreement with experimental results. The theoretical analysis is performed under various feedback parameters, and the optimum packaging condition for DFB laser chip in silicon photonics is guided.

© 2014 Optical Society of America

OCIS Codes
(130.0250) Integrated optics : Optoelectronics
(130.3130) Integrated optics : Integrated optics materials
(200.4650) Optics in computing : Optical interconnects
(250.5960) Optoelectronics : Semiconductor lasers

ToC Category:
Lasers and Laser Optics

History
Original Manuscript: December 30, 2013
Revised Manuscript: March 17, 2014
Manuscript Accepted: March 23, 2014
Published: April 2, 2014

Citation
Seiji Takeda and Shigeru Nakagawa, "Feedback tolerance of DFB laser for silicon photonics packaging," Opt. Express 22, 8451-8459 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8451


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. P. Pepeljugoski, J. Kash, F. Doany, D. Kuchta, L. Schares, C. Schow, M. Taubenblatt, B. J. Offrein, A. Benner, “Towards exaflop servers and supercomputers: The roadmap for lower power and higher density optical interconnects,” in Proceedings of 36th European Conference and Exhibition on Optical Communication (Torino, 2010). [CrossRef]
  2. M. Taubenblatt, “Optical interconnects for high-performance computing,” J. Lightwave Technol. 30(4), 448–457 (2012). [CrossRef]
  3. D. A. B. Miller, “Energy consumption in optical modulators for interconnects,” Opt. Express 20(S2), A293–A308 (2012). [CrossRef] [PubMed]
  4. M. Tokunari, H-H Hsu, K. Toriyama, H. Noma, and S. Nakagawa, “High-bandwidth density and low-power optical MCM using waveguide-integrated organic substrate,” (to be published in J. Lightwave Technol.)
  5. Y. Vlasov, “Silicon CMOS-integrated nano-photonics for computer and data communications beyond 100G,” IEEE Commun. Mag. 50, S67–S72 (2012).
  6. S. Assefa, S. Shank, W. Green, M. Khater, E. Kiewra, C. Reinholm, S. Kamlapurkar, A. Rylyakov, C. Schow, F. Horst, P. Huapu, T. Topuria, P. Rice, D. M. Gill, J. Rosenberg, T. Barwicz, Y. Min, J. Proesel, J. Hofrichter, B. J. Offrein, G. Xiaoxiong, W. Haensch, J. Ellis-Monaghan, and Y. Vlasov, “A 90 nm CMOS integrated nano-photonics technology for 25Gbps WDM optical communications applications,” IEDM (IEEE International Electron Devices Meeting), postdeadline session 33.8 (2012).
  7. Y. Arakawa, T. Nakamura, Y. Urino, T. Fujita, “Silicon photonics for next generation system integration platform,” IEEE Commun. Mag. 51(3), 72–77 (2013). [CrossRef]
  8. W. M. Green, M. J. Rooks, L. Sekaric, Y. A. Vlasov, “Ultra-compact, low RF power, 10 Gb/s silicon Mach-Zehnder modulator,” Opt. Express 15(25), 17106–17113 (2007). [CrossRef] [PubMed]
  9. S. Matsuo, K. Takeda, T. Sato, M. Notomi, A. Shinya, K. Nozaki, H. Taniyama, K. Hasebe, T. Kakitsuka, “Room-temperature continuous-wave operation of lateral current injection wavelength-scale embedded active-region photonic-crystal laser,” Opt. Express 20(4), 3773–3780 (2012). [CrossRef] [PubMed]
  10. C. Sciancalepore, B. B. Bakir, X. Letartre, J. Harduin, N. Olivier, C. Seassal, J.-M. Fedeli, P. Viktorovitch, “CMOS-compatible ultra-compact 1.55-μm emitting VCSELs using double photonic crystal mirrors,” IEEE Photonics Technol. Lett. 24(6), 455–457 (2012). [CrossRef]
  11. T. Baba, “Nanostructured silicon photonics devices fabricated by CMOS-compatible process,” Proceedings of Photonics Global Conference (Singapore, 2012). [CrossRef]
  12. S. Keyvaninia, G. Roelkens, D. Van Thourhout, C. Jany, M. Lamponi, A. Le Liepvre, F. Lelarge, D. Make, G.-H. Duan, D. Bordel, J.-M. Fedeli, “Demonstration of a heterogeneously integrated III-V/SOI single wavelength tunable laser,” Opt. Express 21(3), 3784–3792 (2013). [CrossRef] [PubMed]
  13. H. Park, A. Fang, S. Kodama, J. Bowers, “Hybrid silicon evanescent laser fabricated with a silicon waveguide and III-V offset quantum wells,” Opt. Express 13(23), 9460–9464 (2005). [CrossRef] [PubMed]
  14. N. Fujioka, T. Chu, M. Ishizaka, “Compact and low power consumption hybrid integrated wavelength tunable laser,” J. Lightwave Technol. 28(21), 3115–3120 (2010).
  15. T. Shimizu, N. Hatori, M. Okano, M. Ishizaka, Y. Urino, T. Yamamoto, M. Mori, T. Nakamura, Y. Arakawa, “High density hybrid integrated light source with a laser diode array on a silicon optical waveguide platform for inter-chip optical interconnection,” in Proceedings of IEEE International Conference on Group IV Photonics (London, 2011), pp.181–183. [CrossRef]
  16. L. A. Coldren, S. W. Corzine, and M. L. Mašanović, Diode Lasers and Photonic Integrated Circuits (Wiley, 2012).
  17. M. Gotoda, T. Nishimura, K. Matsumoto, T. Aoyagi, K. Yoshiara, “Highly external optical feedback-tolerant 1.49-μm single-mode lasers with partially corrugated gratings,” IEEE J. Sel. Top. Quantum Electron. 15(3), 612–617 (2009). [CrossRef]
  18. H. Su, L. Zhang, A. L. Gray, R. Wang, T. C. Newell, K. J. Malloy, L. F. Lester, “High external feedback resistance of laterally loss-coupled distributed feedback quantum dot semiconductor lasers,” IEEE Photonics Technol. Lett. 15(11), 1504–1506 (2003). [CrossRef]
  19. M. G. Davis, R. F. O’Dowd, “A transfer matrix method based large-signal dynamic model for multielectrode DFB lasers,” IEEE J. Quantum Electron. 30(11), 2458–2466 (1994). [CrossRef]
  20. O. Lavrova, D. Blumenthal, “Detailed transfer matrix method-based dynamic model for multisection widely tunable GCSR lasers,” J. Lightwave Technol. 18(9), 1274–1283 (2000).
  21. N. Schunk, K. Petermann, “Numerical analysis of the feedback regimes for a single-mode semiconductor laser with external feedback,” IEEE J. Quantum Electron. 24(7), 1242–1247 (1988). [CrossRef]
  22. J. Helms, C. Kurtzke, K. Petermann, “External feedback requirements for coherent optical communication systems,” J. Lightwave Technol. 10(8), 1137–1141 (1992). [CrossRef]
  23. K. Petermann, “External optical feedback phenomena in semiconductor lasers,” IEEE J. Sel. Top. Quantum Electron. 1(2), 480–489 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited