OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8460–8472

Characteristics of bent terahertz antiresonant reflecting pipe waveguides

Chih-Hsien Lai, Teng Chang, and Yi-Siang Yeh  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8460-8472 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1468 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



Bending characteristics of the terahertz (THz) pipe waveguides are numerically investigated. Numerical results reveal that the inherent periodic feature of the loss spectrum, resulting from the antiresonant reflection guiding mechanism, is nearly unaffected under bending. However, attenuation constant of the fundamental (HE11) mode becomes polarization dependent for the bent pipe waveguide, and the polarization perpendicular to the bending plane experiences less bending losses. Moreover, unlike the straight case where a larger air-core diameter leads to a smaller attenuation constant, increasing core diameter of the bent pipe waveguide is unable to reduce attenuation constant effectively if the propagation mode is a whispering gallery mode. Finally, behavior of the bent pipe waveguide connected to a straight one is also examined in this work.

© 2014 Optical Society of America

OCIS Codes
(130.2790) Integrated optics : Guided waves
(230.7370) Optical devices : Waveguides
(040.2235) Detectors : Far infrared or terahertz

ToC Category:
Terahertz Optics

Original Manuscript: January 2, 2014
Revised Manuscript: February 14, 2014
Manuscript Accepted: March 13, 2014
Published: April 2, 2014

Chih-Hsien Lai, Teng Chang, and Yi-Siang Yeh, "Characteristics of bent terahertz antiresonant reflecting pipe waveguides," Opt. Express 22, 8460-8472 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. M. Tonouchi, “Cutting-edge terahertz technology,” Nat. Photonics 1(2), 97–105 (2007). [CrossRef]
  2. D. Abbott, X.-C. Zhang, “Scanning the issue: T-ray imaging, sensing, and retection,” Proc. IEEE 95(8), 1509–1513 (2007). [CrossRef]
  3. P. H. Siegel, “Terahertz technology in biology and medicine,” IEEE Trans. Microw. Theory Tech. 52(10), 2438–2447 (2004). [CrossRef]
  4. W. L. Chan, J. Deibel, D. M. Mittleman, “Imaging with terahertz radiation,” Rep. Prog. Phys. 70(8), 1325–1379 (2007). [CrossRef]
  5. J. Federici, L. Moeller, “Review of terahertz and subterahertz wireless communications,” J. Appl. Phys. 107(11), 111101 (2010). [CrossRef]
  6. G. Gallot, S. P. Jamison, R. W. McGowan, D. Grischkowsky, “Terahertz waveguides,” J. Opt. Soc. Am. B 17(5), 851–863 (2000). [CrossRef]
  7. K. Wang, D. M. Mittleman, “Metal wires for terahertz wave guiding,” Nature 432(7015), 376–379 (2004). [CrossRef] [PubMed]
  8. H. Han, H. Park, M. Cho, J. Kim, “Terahertz pulse propagation in a plastic photonic crystal fiber,” Appl. Phys. Lett. 80(15), 2634–2636 (2002). [CrossRef]
  9. T. Hidaka, H. Minamide, H. Ito, J.-I. Nishizawa, K. Tamura, S. Ichikawa, “Ferroelectric PVDF cladding terahertz waveguide,” J. Lightwave Technol. 23(8), 2469–2473 (2005). [CrossRef]
  10. L.-J. Chen, H.-W. Chen, T.-F. Kao, J.-Y. Lu, C.-K. Sun, “Low-loss subwavelength plastic fiber for terahertz waveguiding,” Opt. Lett. 31(3), 308–310 (2006). [CrossRef] [PubMed]
  11. M. Nagel, A. Marchewka, H. Kurz, “Low-index discontinuity terahertz waveguides,” Opt. Express 14(21), 9944–9954 (2006). [CrossRef] [PubMed]
  12. B. Bowden, J. A. Harrington, O. Mitrofanov, “Silver/polystyrene-coated hollow glass waveguides for the transmission of terahertz radiation,” Opt. Lett. 32(20), 2945–2947 (2007). [CrossRef] [PubMed]
  13. A. Hassani, A. Dupuis, M. Skorobogatiy, “Porous polymer fibers for low-loss Terahertz guiding,” Opt. Express 16(9), 6340–6351 (2008). [CrossRef] [PubMed]
  14. S. Atakaramians, S. Afshar V, B. M. Fischer, D. Abbott, T. M. Monro, “Porous fibers: a novel approach to low loss THz waveguides,” Opt. Express 16(12), 8845–8854 (2008). [CrossRef] [PubMed]
  15. K. Nielsen, H. K. Rasmussen, P. U. Jepsen, O. Bang, “Porous-core honeycomb bandgap THz fiber,” Opt. Lett. 36(5), 666–668 (2011). [CrossRef] [PubMed]
  16. M. Rozé, B. Ung, A. Mazhorova, M. Walther, M. Skorobogatiy, “Suspended core subwavelength fibers: towards practical designs for low-loss terahertz guidance,” Opt. Express 19(10), 9127–9138 (2011). [CrossRef] [PubMed]
  17. C.-H. Lai, Y.-C. Hsueh, H.-W. Chen, Y.-J. Huang, H.-C. Chang, C.-K. Sun, “Low-index terahertz pipe waveguides,” Opt. Lett. 34(21), 3457–3459 (2009). [CrossRef] [PubMed]
  18. C.-H. Lai, B. You, J.-Y. Lu, T.-A. Liu, J.-L. Peng, C.-K. Sun, H.-C. Chang, “Modal characteristics of antiresonant reflecting pipe waveguides for terahertz waveguiding,” Opt. Express 18(1), 309–322 (2010). [CrossRef] [PubMed]
  19. M. A. Duguay, Y. Kokubun, T. L. Koch, L. Pfeiffer, “Antiresonant reflecting optical waveguides in SiO2–Si multilayer structures,” Appl. Phys. Lett. 49(1), 13–15 (1986). [CrossRef]
  20. E. Nguema, D. Férachou, G. Humbert, J. L. Auguste, J. M. Blondy, “Broadband terahertz transmission within the air channel of thin-wall pipe,” Opt. Lett. 36(10), 1782–1784 (2011). [CrossRef] [PubMed]
  21. B. You, J.-Y. Lu, C.-P. Yu, T.-A. Liu, J.-L. Peng, “Terahertz refractive index sensors using dielectric pipe waveguides,” Opt. Express 20(6), 5858–5866 (2012). [CrossRef] [PubMed]
  22. A. Mazhorova, A. Markov, B. Ung, M. Rozé, S. Gorgutsa, M. Skorobogatiy, “Thin chalcogenide capillaries as efficient waveguides from mid-infrared to terahertz,” J. Opt. Soc. Am. B 29(8), 2116–2123 (2012). [CrossRef]
  23. M. F. Xiao, J. Liu, W. Zhang, J. L. Shen, Y. D. Huang, “THz wave transmission in thin-wall PMMA pipes fabricated by fiber drawing technique,” Opt. Commun. 298-299, 101–105 (2013). [CrossRef]
  24. J.-T. Lu, Y.-C. Hsueh, Y.-R. Huang, Y.-J. Hwang, C.-K. Sun, “Bending loss of terahertz pipe waveguides,” Opt. Express 18(25), 26332–26338 (2010). [CrossRef] [PubMed]
  25. W. A. Gambling, H. Matsumura, C. M. Ragdale, “Field deformation in a curved single-mode fibre,” Electron. Lett. 14(5), 130–132 (1978). [CrossRef]
  26. M. Heiblum, J. H. Harris, “Analysis of curved optical waveguides by conformal transformation,” IEEE J. Quantum Electron. 11(2), 75–83 (1975). [CrossRef]
  27. S. Kim, A. Gopinath, “Vector analysis of optical dielectric waveguide bends using finite-difference method,” J. Lightwave Technol. 14(9), 2085–2092 (1996). [CrossRef]
  28. N. N. Feng, G. R. Zhou, C. Xu, W. P. Huang, “Computation of full-vector modes for bending waveguide using cylindrical perfectly matched layers,” J. Lightwave Technol. 20(11), 1976–1980 (2002). [CrossRef]
  29. K. Kakihara, N. Kono, K. Saitoh, M. Koshiba, “Full-vectorial finite element method in a cylindrical coordinate system for loss analysis of photonic wire bends,” Opt. Express 14(23), 11128–11141 (2006). [CrossRef] [PubMed]
  30. J. Xiao, H. Ni, X. Sun, “Full-vector mode solver for bending waveguides based on the finite-difference frequency-domain method in cylindrical coordinate systems,” Opt. Lett. 33(16), 1848–1850 (2008). [CrossRef] [PubMed]
  31. F. L. Teixeira, W. C. Chew, “PML-FDTD in cylindrical and spherical grids,” IEEE Microwave Guided Wave Lett. 7(9), 285–287 (1997). [CrossRef]
  32. D. Marcuse, “Curvature loss formula for optical fibers,” J. Opt. Soc. Am. 66(3), 216–220 (1976). [CrossRef]
  33. R. T. Schermer, J. H. Cole, “Improved bend loss formula verified for optical fiber by simulation and experiment,” IEEE J. Quantum Electron. 43(10), 899–909 (2007). [CrossRef]
  34. M. Skorobogatiy, K. Saitoh, M. Koshiba, “Full-vectorial coupled mode theory for the evaluation of macro-bending loss in multimode fibers. application to the hollow-core photonic bandgap fibers,” Opt. Express 16(19), 14945–14953 (2008). [CrossRef] [PubMed]
  35. H. A. Haus, Waves and Fields in Optoelectronics (Prentice-Hall, 1984).

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited