OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8473–8489

Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene

P. Weis, J. L. Garcia-Pomar, and M. Rahm  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8473-8489 (2014)
http://dx.doi.org/10.1364/OE.22.008473


View Full Text Article

Enhanced HTML    Acrobat PDF (2548 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We evidence by numerical calculations that optically pumped graphene is suitable for compensating inherent loss in terahertz (THz) metamaterials. We calculate the complex conductivity of graphene under optical pumping and determine the proper conditions for terahertz amplification in single layer graphene. It is shown that amplification in graphene occurs up to room temperature for moderate pump intensities at telecommunication wavelength λ = 1.5 μm. Furthermore, we investigate the coupling between a plasmonic split ring resonator (SRR) metamaterial and optically pumped graphene at a temperature T = 77 K and a pump intensity I = 300 mW/mm2. We find that the loss of a SRR metamaterial can be compensated by optically stimulated amplification in graphene. Moreover, we show that a hybrid material consisting of asymmetric split-ring resonators and optically pumped graphene can emit coherent THz radiation at minimum output power levels of 60 nW/mm2.

© 2014 Optical Society of America

OCIS Codes
(140.3380) Lasers and laser optics : Laser materials
(140.3410) Lasers and laser optics : Laser resonators
(160.3918) Materials : Metamaterials
(300.6495) Spectroscopy : Spectroscopy, teraherz

ToC Category:
Terahertz optics

History
Original Manuscript: January 2, 2014
Revised Manuscript: March 11, 2014
Manuscript Accepted: March 11, 2014
Published: April 2, 2014

Citation
P. Weis, J. L. Garcia-Pomar, and M. Rahm, "Towards loss compensated and lasing terahertz metamaterials based on optically pumped graphene," Opt. Express 22, 8473-8489 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8473


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. H.-T. Chen, J. F. O’Hara, A. K. Azad, A. J. Taylor, R. D. Averitt, D. B. Shrekenhamer, W. J. Padilla, “Experimental demonstration of frequency-agile terahertz metamaterials,” Nat. Photonics 2, 295–298 (2008). [CrossRef]
  2. O. Paul, C. Imhof, B. Laegel, S. Wolff, J. Heinrich, S. Hoefling, A. Forchel, R. Zengerle, R. Beigang, M. Rahm, “Polarization-independent active metamaterial for high-frequency terahertz modulation,” Opt. Express 10, 819–827 (2009). [CrossRef]
  3. N. Liu, T. Weiss, M. Mesch, L. Langguth, U. Eigenthaler, M. Hirscher, C. Sönnichsen, H. Giessen, “Planar metamaterial analogue of electromagnetically induced transparency for plasmonic sensing,” Nano Lett. 10, 1103–1107 (2010). [CrossRef]
  4. P. Weis, J. L. Garcia-Pomar, R. Beigang, M. Rahm, “Hybridization induced transparency in composites of metamaterials and atomic media,” Opt. Express 19, 23573 (2011). [CrossRef] [PubMed]
  5. B. Reinhard, K. M. Schmitt, V. Wollrab, J. Neu, R. Beigang, M. Rahm, “Metamaterial near-field sensor for deep-subwavelength thickness measurements and sensitive refractometry in the terahertz frequency range,” Appl. Phys. Lett. 100, 221101 (2012). [CrossRef]
  6. D. Dietze, K. Unterrainer, J. Darmo, “Role of geometry for strong coupling in active terahertz metamaterials,” Phys. Rev. B 87, 075324 (2013). [CrossRef]
  7. N. I. Zheludev, S. L. Prosvirnin, N. Papasimakis, V. A. Fedotov, “Lasing spaser,” Nat. Photonics 2, 351–354 (2008). [CrossRef]
  8. C. Walther, G. Scalari, M. I. Amanti, M. Beck, J. Faist, “Microcavity laser oscillating in a circuit-based resonator,” Science 327, 1495–1497 (2010). [CrossRef] [PubMed]
  9. M. I. Stockman, “The spaser as a nanoscale quantum generator and ultrafast amplifier,” J. Opt. 12, 024004 (2010). [CrossRef]
  10. S. Xiao, V. P. Drachev, A. V. Kildishev, X. Ni, U. K. Chettiar, H.-K. Yuan, V. M. Shalaev, “Loss-free and active optical negative-index metamaterials,” Nature 466, 735–740 (2010). [CrossRef] [PubMed]
  11. A. Fang, Z. Huang, T. Koschny, C. M. Soukoulis, “Overcoming the losses of a split ring resonator array with gain,” Opt. Express 19, 12688–12699 (2011). [CrossRef] [PubMed]
  12. O. Hess, J. B. Pendry, S. A. Maier, R. F. Oulton, J. M. Hamm, K. L. Tsakmakidis, “Active nanoplasmonic metamaterials,” Nat. Mater. 11, 573–584 (2012). [CrossRef] [PubMed]
  13. M. A. Noginov, G. Zhu, A. M. Belgrave, R. Bakker, E. E. Narimanov, S. Stout, E. Herz, T. Suteewong, U. Wiesner, “Demonstration of a spaser-based nanolaser,” Nature 460, 1110–1112 (2009). [CrossRef] [PubMed]
  14. A. Fang, T. Koschny, C. M. Soukoulis, “Lasing in metamaterial nanostructures,” J. Opt. 12, 024013 (2010). [CrossRef]
  15. C. Fietz, C. M. Soukoulis, “Finite element simulation of microphotonic lasing system,” Opt. Express 20, 11548–11560 (2012). [CrossRef] [PubMed]
  16. K. Tanaka, E. Plum, J. Y. Ou, T. Uchino, N. I. Zheludev, “Multifold enhancement of quantum dot luminescence in plasmonic metamaterials,” Phys. Rev. Lett. 105, 227403 (2010). [CrossRef]
  17. D. R. Chamberlin, E. Bründermann, E. E. Haller, “Narrow linewidth intervalence-band emission from germanium terahertz lasers,” Appl. Phys. Lett. 83, 3–5 (2003). [CrossRef]
  18. M. A. Belkin, Q. J. Wang, C. Pflügl, A. Belyanin, S. P. Khanna, A. G. Davies, E. H. Linfield, F. Capasso, “High-temperature operation of terahertz quantum cascade laser sources,” IEEE J. Sel. Top. Quantum Electron. 15, 952–967 (2009). [CrossRef]
  19. R. W. Adams, K. Vijayraghavan, Q. J. Wang, J. Fan, F. Capasso, S. P. Khanna, A. G. Davies, E. H. Linfield, M. A. Belkin, “GaAs/Al0.15Ga0.85 as terahertz quantum cascade lasers with double-phonon resonant depopulation operating up to 172 k,” Appl. Phys. Lett. 97, 131111 (2010). [CrossRef]
  20. B. Hinkov, M. Beck, E. Gini, J. Faist, “Quantum cascade laser in a master oscillator power amplifier configuration with watt-level optical output power,” Opt. Express 21, 19180–19386 (2013). [CrossRef] [PubMed]
  21. Z. Diao, C. Bonzon, G. Scalari, M. Beck, J. Faist, R. Houdré, “Continuous-wave vertically emitting photonic crystal terahertz laser,” Laser Photonics Rev. 7, 45–50 (2013). [CrossRef]
  22. B. Sensale-Rodriguez, T. Fang, R. Yan, M. M. Kelly, D. Jena, L. Liu, H. G. Xing, “Unique prospects for graphene-based terahertz modulators,” Appl. Phys. Lett. 99, 113104 (2011). [CrossRef]
  23. P. Tassin, T. Koschny, M. Kafesaki, C. M. Soukoulis, “A comparison of graphene, superconductors and metals as conductors for metamaterials and plasmonics,” Nat. Photonics 6, 259–264 (2012). [CrossRef]
  24. S. H. Lee, M. Choi, T.-T. Kim, S. Lee, M. Liu, X. Yin, H. K. Choi, S. S. Lee, C.-G. Choi, S.-Y. Choi, X. Zhang, B. Min, “Switching teraherz waves with gate-controlled active graphene metamaterials,” Nat. Mater. 11, 936–941 (2012). [CrossRef] [PubMed]
  25. B. Sensale-Rodriguez, R. Yan, M. M. Kelly, T. Fang, K. Tahy, W. S. Hwang, D. Jena, L. Liu, H. G. Xing, “Broadband graphene terahertz modulators enabled by intraband transitions,” Nat. Commun.3(2012). [CrossRef] [PubMed]
  26. P. Weis, J. L. Garcia-Pomar, M. Höh, B. Reinhard, A. Brodyanski, M. Rahm, “Spectrally wide-band terahertz wave modulator based on optically tuned graphene,” ACS Nano 6, 9118–9124 (2012). [CrossRef] [PubMed]
  27. S. H. Lee, J. Choi, H.-D. Kim, H. Choi, B. Min, “Ultrafast refractive index control of a terahertz graphene metamaterial,” Sci. Rep. 3, 2135 (2013). [CrossRef] [PubMed]
  28. C.-C. Chen, M. Aykol, C.-C. Chang, A. F. J. Levi, S. B. Cronin, “Graphene-silicon schottky diodes,” Nano Lett. 11, 1863–1867 (2011). [CrossRef] [PubMed]
  29. A. Vakil, N. Engheta, “Transformation optics using graphene,” Science 332, 1291–1294 (2011). [CrossRef] [PubMed]
  30. Y. Sun, B. Edwards, A. Alù, N. Engheta, “Experimental realization of optical lumped nanocircuits at infrared wavelengths,” Nat. Mater. 11, 1–5 (2012). [CrossRef]
  31. V. Ryzhii, M. Ryzhii, T. Otsuji, “Negative dynamic conductivity of graphene with optical pumping,” J. Appl. Phys. 101, 083114 (2007). [CrossRef]
  32. F. Rana, “Graphene terahertz plasmon oscillators,” IEEE Trans. Nanotechnol. 7, 91–99 (2008). [CrossRef]
  33. A. A. Dubinov, V. Y. Aleshkin, M. Ryzhii, T. Otsuji, V. Ryzhii, “Terahertz laser with optically pumped graphene layers and fabri-perot resonator,” Appl. Phys. Express 2, 092301 (2009). [CrossRef]
  34. V. Ryzhii, M. Ryzhii, A. Satou, T. Otsuji, A. A. Dubinov, V. Y. Aleshkin, “Feasibility of terahertz lasing in optically pumped epitaxial multiple graphene layer structures,” J. Appl. Phys. 106, 084507 (2009). [CrossRef]
  35. V. Ryzhii, A. A. Dubinov, T. Otsuji, V. Mitin, M. S. Shur, “Terahertz lasers based on optically pumped multiple graphene structures with slot-line and dielectric waveguides,” J. Appl. Phys. 107, 054505 (2010). [CrossRef]
  36. A. A. Dubinov, V. Y. Aleshkin, V. Mitin, T. Otsuji, V. Ryzhii, “Terahertz surface plasmons in optically pumped graphene structures,” J. Phys. Condens. Matter 23, 145302 (2011). [CrossRef] [PubMed]
  37. Y. Takatsuka, K. Takahagi, E. Sano, V. Ryzhii, T. Otsuji, “Gain enhancement in graphene terahertz amplifiers with resonant structures,” J. Appl. Phys. 112, 033103 (2012). [CrossRef]
  38. V. V. Popov, O. V. Polischuk, A. R. Davoyan, V. Ryzhii, T. Otsuji, M. S. Shur, “Plasmonic terahertz lasing in an array of graphene nanocavities,” Phys. Rev. B 86, 195437 (2012). [CrossRef]
  39. V. Ryzhii, M. Ryzhii, V. Mitin, T. Otsuji, “Toward the creation of terahertz graphene injection laser,” J. Appl. Phys. 110, 094503 (2011). [CrossRef]
  40. H. Karasawa, T. Komori, T. Watanabe, A. Satou, H. Fukidome, M. Suemitsu, V. Ryzhii, T. Otsuji, “Observation of amplified terahertz emission from optically pumped heteroepitaxial graphene-on-silicon materials,” J. Infrared Millim. Terahertz Waves 32, 655–665 (2011). [CrossRef]
  41. I. Gierz, J. C. Petersen, M. Mitrano, C. Cacho, E. Turcu, E. Springate, A. Sthr, A. Khler, U. Starke, A. Cavalleri, “Snapshots of non-equilibrium dirac carrier distributions in graphene,” Nat. Mater. 12, 1119–1124 (2013). [CrossRef] [PubMed]
  42. L. Falkovsky, A. A. Varlamov, “Space-time dispersion of graphene conductivity,” Eur. Phys. J. B 56, 281–284 (2007). [CrossRef]
  43. T. Stauber, N. M. R. Peres, A. K. Geim, “Optical conductivity of graphene in the visible region of the spectrum,” Phys. Rev. B 78, 085432 (2008). [CrossRef]
  44. I. E. Khodasevych, C. M. Shah, S. Sriram, M. Bhaskaran, W. Withayachumnankul, B. S. Y. Ung, H. Lin, W. S. T. Rowe, D. Abbott, A. Mitchel, “Elastomeric silicone substrates for terahertz fishnet metamaterials,” Appl. Phys. Lett. 100, 061101 (2012). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited