OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8525–8532

Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material

Lars H. Frandsen, Yuriy Elesin, Louise F. Frellsen, Miranda Mitrovic, Yunhong Ding, Ole Sigmund, and Kresten Yvind  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8525-8532 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (1718 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



We have designed and for the first time experimentally verified a topology optimized mode converter with a footprint of ~6.3 μm × ~3.6 μm which converts the fundamental even mode to the higher order odd mode of a dispersion engineered photonic crystal waveguide. 2D and 3D topology optimization is utilized and both schemes result in designs theoretically showing an extinction ratio larger than 21 dB. The 3D optimized design has an experimentally estimated insertion loss lower than ~2 dB in an ~43 nm bandwidth. The mode conversion is experimentally confirmed in this wavelength range by recording mode profiles using vertical grating couplers and an infrared camera. The experimentally determined extinction ratio is > 12 dB and is believed to be limited by the spatial resolution of our setup.

© 2014 Optical Society of America

OCIS Codes
(000.3860) General : Mathematical methods in physics
(000.4430) General : Numerical approximation and analysis
(030.4070) Coherence and statistical optics : Modes
(130.3120) Integrated optics : Integrated optics devices
(130.5296) Integrated optics : Photonic crystal waveguides
(050.6624) Diffraction and gratings : Subwavelength structures

ToC Category:
Photonic Crystals

Original Manuscript: January 31, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 27, 2014
Published: April 2, 2014

Lars H. Frandsen, Yuriy Elesin, Louise F. Frellsen, Miranda Mitrovic, Yunhong Ding, Ole Sigmund, and Kresten Yvind, "Topology optimized mode conversion in a photonic crystal waveguide fabricated in silicon-on-insulator material," Opt. Express 22, 8525-8532 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. Y. Huang, G. Xu, S.-T. Ho, “An ultracompact optical mode order converter,” IEEE Photon. Technol. Lett. 18(21), 2281–2283 (2006). [CrossRef]
  2. L. Luo, L. H. Gabrielli, and M. Lipson, “On-chip mode-division multiplexer,” in CLEO: 2013, OSA Technical Digest (online) (Optical Society of America, 2013), paper CTh1C.6.
  3. Y. Ding, J. Xu, F. Da Ros, B. Huang, H. Ou, C. Peucheret, “On-chip two-mode division multiplexing using tapered directional coupler-based mode multiplexer and demultiplexer,” Opt. Express 21(8), 10376–10382 (2013). [CrossRef] [PubMed]
  4. B. T. Lee, S. Y. Shin, “Mode-order converter in a multimode waveguide,” Opt. Lett. 28(18), 1660–1662 (2003). [CrossRef] [PubMed]
  5. G. Chen, J. U. Kang, “Waveguide mode converter based on two-dimensional photonic crystals,” Opt. Lett. 30(13), 1656–1658 (2005). [CrossRef] [PubMed]
  6. V. Liu, D. A. B. Miller, S. Fan, “Ultra-compact photonic crystal waveguide spatial mode converter and its connection to the optical diode effect,” Opt. Express 20(27), 28388–28397 (2012). [CrossRef] [PubMed]
  7. J. Lu, J. Vučković, “Objective-first design of high-efficiency, small-footprint couplers between arbitrary nanophotonic waveguide modes,” Opt. Express 20(7), 7221–7236 (2012). [CrossRef] [PubMed]
  8. M. P. Bendsøe, N. Kikuchi, “Generating optimal topologies in structural design using a homogenization method,” Comput. Methods Appl. Mech. Eng. 71(2), 197–224 (1988). [CrossRef]
  9. P. I. Borel, A. Harpøth, L. H. Frandsen, M. Kristensen, P. Shi, J. S. Jensen, O. Sigmund, “Topology optimization and fabrication of photonic crystal structures,” Opt. Express 12(9), 1996–2001 (2004). [CrossRef] [PubMed]
  10. J. S. Jensen, O. Sigmund, “Topology optimization for nano-photonics,” Laser Photon. Rev. 5(2), 308–321 (2011), doi:. [CrossRef]
  11. S. Johnson, J. Joannopoulos, “Block-iterative frequency-domain methods for Maxwell’s equations in a planewave basis,” Opt. Express 8(3), 173–190 (2001). [CrossRef] [PubMed]
  12. L. H. Frandsen, A. V. Lavrinenko, J. Fage-Pedersen, P. I. Borel, “Photonic crystal waveguides with semi-slow light and tailored dispersion properties,” Opt. Express 14(20), 9444–9450 (2006). [CrossRef] [PubMed]
  13. J. Li, T. P. White, L. O’Faolain, A. Gomez-Iglesias, T. F. Krauss, “Systematic design of flat band slow light in photonic crystal waveguides,” Opt. Express 16(9), 6227–6232 (2008). [CrossRef] [PubMed]
  14. Y. Elesin, B. S. Lazarov, J. S. Jensen, O. Sigmund, “Design of robust and efficient photonic switches using topology optimization,” Photon. Nanostruct. Fund. Appl. 10(1), 153–165 (2012). [CrossRef]
  15. Y. Elesin, B. S. Lazarov, J. S. Jensen, O. Sigmund, “Time domain topology optimization of 3D nanophotonic devices,” Photon. Nanostruct. Fund. Appl. 12(1), 23–33 (2014). [CrossRef]
  16. M. Pu, L. Liu, H. Ou, K. Yvind, J. M. Hvam, “Ultra-low-loss inverted taper coupler for silicon-on-insulator ridge waveguide,” Opt. Commun. 283(19), 3678–3682 (2010). [CrossRef]
  17. Y. Ding, H. Ou, J. Xu, M. Xiong, and C. Peucheret, “On-chip mode multiplexer based on a single grating coupler,” in Proceedings of IEEE Photonics Conference (Institute of Electrical and Electronics Engineers, 2012), pp. 707–708. [CrossRef]
  18. B. Wohlfeil, S. Burger, C. Stamatiadis, J. Pomplun, F. Schmidt, L. Zimmermann, K. Petermann, “Numerical simulation of grating couplers for mode multiplexed systems,” Proc. SPIE 8988, 89880K (2014). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited