OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8533–8540

An MMI-based wavelength combiner employing non-uniform refractive index distribution

Siddharth Singh, Keisuke Kojima, Toshiaki Koike-Akino, Bingnan Wang, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8533-8540 (2014)
http://dx.doi.org/10.1364/OE.22.008533


View Full Text Article

Enhanced HTML    Acrobat PDF (1146 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

A novel wavelength combiner using non-uniform refractive index distribution within a multimode interference device is proposed and simulated. The refractive index step creates separate localized modes with different effective refractive indices and two modes are strongly excited which form the basis of an interferometer. We applied the concept to 1.30/1.31 μm and 1.31/1.55 μm wavelength combiners on an InP substrate. The lengths of the devices are 1272 μm and 484 μm with simulated insertion losses of 0.6 dB and 0.67 dB respectively.

© 2014 Optical Society of America

OCIS Codes
(230.1360) Optical devices : Beam splitters
(230.3120) Optical devices : Integrated optics devices
(130.7408) Integrated optics : Wavelength filtering devices

ToC Category:
Integrated Optics

History
Original Manuscript: February 13, 2014
Revised Manuscript: March 24, 2014
Manuscript Accepted: March 25, 2014
Published: April 2, 2014

Citation
Siddharth Singh, Keisuke Kojima, Toshiaki Koike-Akino, Bingnan Wang, Kieran Parsons, Satoshi Nishikawa, and Eiji Yagyu, "An MMI-based wavelength combiner employing non-uniform refractive index distribution," Opt. Express 22, 8533-8540 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8533


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Barbarin, X. J. M. Leijtens, E. A. J. M. Bente, C. M. Louzao, J. R. Kooiman, M. K. Smit, “Extremely small AWG demultiplexer fabricated on InP by using a douoble-etch process,” IEEE Photon. Technol. Lett. 16(11), 2478–2480 (2004). [CrossRef]
  2. N. Goto, G. L. Yip, “Y-branch wavelength multi-demultplexer for λ=1.30 μm and 1.55 μm,” Electron. Lett. 26, 102–103 (2007). [CrossRef]
  3. A. Tervonen, P. Poyhonen, S. Honkanen, M. Tahkokorpi, “A guided-wave Mach–Zehnder interferometer structure for wavelength multiplexing,” IEEE Photon. Technol. Lett. 3, 516–518 (1991). [CrossRef]
  4. C. van Dam, M. R. Amersfoort, G. M. ten Kate, F. P. G. M. van Ham, M. K. Smit, “Novel InP-based phased-array wavelength demultiplexer using a generalized MMI-MZI configuration,” in Proceedings of the 7th Eur. Conf on Int. Opt. (ECIO ’95), 275–278 (1995).
  5. L. B. Soldano, E. C. M. Pennings, “Optical multi-mode interference devices based on self-imaging: principles and applications,” J. Lightwave Technol. 13(4), 615–627 (1995). [CrossRef]
  6. C. Yao, H. G. Bach, R. Zhang, G. Zhou, J. H. Choi, C. Jiang, R. Kunkel, “An ultracompact multimode interference wavelength splitter employing asymmetrical multi-section structures,” Opt. Express 20, 18248–18253 (2012). [CrossRef] [PubMed]
  7. Y. Shi, S. Anand, S. He, “A polarization-insensitive 1310/1550-nm demultiplexer based on sandwiched multimode interference waveguides,” IEEE Photon. Technol. Lett. 19, 1789–1791 (2007). [CrossRef]
  8. M.-C. Wu, S.-Y. Tseng, “Design and simulation of multimode interference based demultiplexers aided by computer-generated planar holograms,” Opt. Express 18, 11270–11275 (2010). [CrossRef] [PubMed]
  9. S. Özbayat, K. Kojima, T. Koike-Akino, B. Wang, K. Parsons, S. Singh, S. Nishikawa, E. Yagyu, “Application of numerical optimization to the design of InP-based wavelength combiners,” Opt. Commun. 322, 131–136 (2014). [CrossRef]
  10. M. D. Gregory, Z. Bayraktar, D. H. Werner, “Fast optimization of electromagnetic design problems using the covariance matrix adaptation evolutionary strategy,” IEEE Trans. Antennas Propagat. 59(4), 1275–1285 (2011). [CrossRef]
  11. D. F. G. Gallagher, T. P. Fellici, “Eigenmode expansion methods for simulation of optical propagation in photonics: pros and cons,” Proc. SPIE 4987, 69–82 (2003). [CrossRef]
  12. Y. P. Li, C. H. Henry, E. J. Laskowski, H. H. Yaffe, R. L. Sweatt, “Monolithic optical waveguide 1.31/1.55 μm WDM with −50dB crosstalk over 100 nm bandwidth,” Electron. Lett. 312100–2101 (1995). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited