OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8541–8555

Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs

Pengfei Qiao, Guan-Lin Su, Yi Rao, Ming C. Wu, Connie J. Chang-Hasnain, and Shun Lien Chuang  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8541-8555 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2359 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



A comprehensive theoretical model for the long-wavelength micro-electro-mechanical-tunable high-contrast-grating vertical-cavity surface-emitting lasers is presented. Our band structure model calculates the optical gain and spontaneous emission of the InGaAlAs quantum well active region. The grating reflectivity and the cavity resonance condition are investigated through optical modeling. Correlating the results with the electrostatic model for the micro-electro-mechanical system, we accurately predict the measurements on the voltage-contolled lasing wavelength. Furthermore, our calculated temperature-dependent wavelength-tunable light output vs. current (L-I) curves show excellent agreement with experiment.

© 2014 Optical Society of America

OCIS Codes
(050.2770) Diffraction and gratings : Gratings
(140.3600) Lasers and laser optics : Lasers, tunable
(230.4685) Optical devices : Optical microelectromechanical devices
(140.7260) Lasers and laser optics : Vertical cavity surface emitting lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: February 25, 2014
Revised Manuscript: March 26, 2014
Manuscript Accepted: March 26, 2014
Published: April 2, 2014

Pengfei Qiao, Guan-Lin Su, Yi Rao, Ming C. Wu, Connie J. Chang-Hasnain, and Shun Lien Chuang, "Comprehensive model of 1550 nm MEMS-tunable high-contrast-grating VCSELs," Opt. Express 22, 8541-8555 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. K. Iga, “Surface-emitting laser-its birth and generation of new optoelectronics field,” IEEE J. Sel. Top. Quantum Electron. 6, 1201–1215 (2000). [CrossRef]
  2. M.-C. Amann, W. Hofmann, “InP-based long-wavelength VCSELs and VCSEL arrays,” IEEE J. Sel. Top. Quantum Electron. 15, 861–868 (2009). [CrossRef]
  3. P. A. Martin, “Near-infrared diode laser spectroscopy in chemical process and environmental air monitoring,” Chem. Soc. Rev. 31, 201–210 (2002). [CrossRef] [PubMed]
  4. D. I. Babic, K. Streubel, R. P. Mirin, N. M. Margalit, J. E. Bowers, E. L. Hu, D. E. Mars, L. Yang, K. Carey, “Room-temperature continuous-wave operation of 1.54-μm vertical-cavity lasers,” IEEE Photon. Technol. Lett. 7, 1225–1227 (1995). [CrossRef]
  5. C. J. Chang-Hasnain, “Tunable VCSEL,” IEEE J. Sel. Top. Quantum Electron. 6, 978–987 (2000). [CrossRef]
  6. N. Satyan, A. Vasilyev, G. Rakuljic, V. Leyva, A. Yariv, “Precise control of broadband frequency chirps using optoelectronic feedback,” Opt. Express 17, 15991–15999 (2009). [CrossRef] [PubMed]
  7. M. Y. Li, W. Yuen, G. S. Li, C. J. Chang-Hasnain, “Top-emitting micromechanical VCSEL with a 31.6-nm tuning range,” IEEE Photon. Technol. Lett. 10, 18–20 (1998). [CrossRef]
  8. M. C. Huang, Y. Zhou, C. J. Chang-Hasnain, “A surface-emitting laser incorporating a high-index-contrast subwavelength grating,” Nat. Photonics 1, 119–122 (2007). [CrossRef]
  9. C. Chase, Y. Rao, W. Hofmann, C. J. Chang-Hasnain, “1550 nm high contrast grating VCSEL,” Opt. Express 18, 15461–15466 (2010). [CrossRef] [PubMed]
  10. Y. Rao, W. J. Yang, C. Chase, M. C. Y. Huang, D. P. Worland, S. Khaleghi, M. R. Chitgarha, M. Ziyadi, A. E. Willner, C. J. Chang-Hasnain, “Long-wavelength VCSEL using high-contrast grating,” IEEE J. Sel. Top. Quantum Electron. 19, 1701311 (2013). [CrossRef]
  11. D. B. Young, J. W. Scott, F. H. Peters, M. G. Peters, M. L. Majewski, B. J. Thibeault, S. W. Corzine, L. A. Coldren, “Enhanced performance of offset-gain high-barrier vertical-cavity surface-emitting lasers,” IEEE J. Quantum Electron. 29, 2013–2022 (1993). [CrossRef]
  12. S. L. Chuang, Physics of Photonic Devices, 2 (Wiley, 2009), Chap. 4 and 9.
  13. G. L. Bir, G. E. Pikus, Symmetry and Strain-Induced Effects in Semiconductors (Wiley, 1974), Chap. 5.
  14. L. Condren, S. Corzine, Diode Lasers and Photonic Integrated Circuits (Wiley, 1995), Chap. 4.
  15. I. Vurgaftman, J. R. Meyer, L. R. Ram-Mohan, “Band parameters for IIIV compound semiconductors and their alloys,” J. Appl. Phys. 89, 5815 (2001). [CrossRef]
  16. Y. P. Varshni, “Temperature dependence of the energy gap in semiconductors,” Physica 34, 149–154 (1967). [CrossRef]
  17. J. Minch, S. H. Park, T. Keating, S. L. Chuang, “Theory and experiment of In1−xGaxAsyP1−y and In1−x−yGaxAlyAs long-wavelength strained quantum-well lasers,” IEEE J. Quantum Electron. 35, 771–782 (1999). [CrossRef]
  18. V. Karagodsky, F. G. Sedgwick, C. J. Chang-Hasnain, “Theoretical analysis of subwavelength high contrast grating reflectors,” Opt. Express 18, 16973–16988 (2010). [CrossRef] [PubMed]
  19. W. C. Chew, Waves and Fields in Inhomogeneous Media (IEEE, 1995), Chap. 2.
  20. M. Y. Li, C. J. Chang-Hasnain, “Tilt loss in wavelength tunable micromechanical vertical cavity lasers,” in CLEO: 1999, 457–458, May1999.
  21. S.-W. Chang, C.-Y. Lu, S. L. Chuang, T. D. Germann, U. W. Pohl, D. Bimberg, “Theory of metal-cavity surface-emitting microlasers and comparison with experiment,” IEEE J. Sel. Top. Quantum Electron. 17, 1681–1692 (2011). [CrossRef]
  22. J. W. Scott, D. B. Young, B. J. Thibeault, M. G. Peters, L. A. Coldren, “Design of index-guided vertical-cavity lasers for low temperature-sensitivity, sub-milliamp thresholds, and single-mode operation,” IEEE J. Sel. Top. Quantum Electron. 1, 638–648 (1995). [CrossRef]
  23. P. V. Mena, J. J. Morikuni, S.-M. Kang, A. V. Harton, K. W. Wyatt, “A comprehensive circuit-level model of vertical-cavity surface-emitting lasers,” J. Lightwave Technol. 17, 2612–2632 (1999). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited