OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8574–8584

Leakage channel fibers with microstuctured cladding elements: A unique LMA platform

Sonali Dasgupta, John R Hayes, and David J Richardson  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8574-8584 (2014)
http://dx.doi.org/10.1364/OE.22.008574


View Full Text Article

Enhanced HTML    Acrobat PDF (2392 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

We present a novel design of leakage channel fiber (LCF) that incorporates an air-hole lattice to define the modal filtering characteristics. The approach has the potential to offer single-mode, large mode area (LMA) fibers in a single-material platform with bend loss characteristics comparable to all-solid (LCFs) whilst at the same time providing significant fabrication benefits. We compare the performance of the proposed fiber with that of rod-type photonic crystal fibers (PCFs) and all-solid LCFs offering a similar effective mode area of ~1600μm2 at 1.05μm. Our calculations show that the proposed fiber concept succeeds in combining the advantages of the use of small air holes and the larger design space of rod-type PCFs with the improved bend tolerance and greater higher order mode discrimination of all-solid LCFs, while alleviating their respective issues of rigidity and restricted material design space. We report the fabrication and experimental characterization of a first exemplar fiber, which we demonstrate offers a single-mode output with a fundamental mode area ~1440µm2 at 1.06µm, and that can be bent down to a radius of 20cm with a bend loss of <3dB/turn. Finally we show that the proposed design concept can be adopted to achieve larger mode areas (> 3000µm2), albeit at the expense of reduced bend tolerance.

© 2014 Optical Society of America

OCIS Codes
(060.2280) Fiber optics and optical communications : Fiber design and fabrication
(060.2400) Fiber optics and optical communications : Fiber properties
(060.2430) Fiber optics and optical communications : Fibers, single-mode
(060.4005) Fiber optics and optical communications : Microstructured fibers
(060.5295) Fiber optics and optical communications : Photonic crystal fibers

ToC Category:
Fiber Optics

History
Original Manuscript: November 21, 2013
Revised Manuscript: March 18, 2014
Manuscript Accepted: March 18, 2014
Published: April 3, 2014

Citation
Sonali Dasgupta, John R Hayes, and David J Richardson, "Leakage channel fibers with microstuctured cladding elements: A unique LMA platform," Opt. Express 22, 8574-8584 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8574


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. Y. Jeong, A. J. Boyland, J. K. Sahu, S. Chung, J. Nilsson, D. N. Payne, “Multi-kilowatt single-mode ytterbium-doped large-core fiber laser,” J. Opt. Soc. Korea 13(4), 416–422 (2009). [CrossRef]
  2. A. Malinowski, A. Piper, J. H. V. Price, K. Furusawa, Y. Jeong, J. Nilsson, D. J. Richardson, “Ultrashort-pulse Yb3+-fiber-based laser and amplifier system producing >25-W average power,” Opt. Lett. 29(17), 2073–2075 (2004). [CrossRef] [PubMed]
  3. F. Röser, T. Eidam, J. Rothhardt, O. Schmidt, D. N. Schimpf, J. Limpert, A. Tünnermann, “Millijoule pulse energy high repetition rate femtosecond fiber chirped-pulse amplification system,” Opt. Lett. 32(24), 3495–3497 (2007). [CrossRef] [PubMed]
  4. http://phys.org/news/2013-06-incoherent-combining-fiber-lasers-energy.html
  5. P. F. Moulton, “High power Tm:silica fiber lasers: Current status, prospects and challenges,” in CLEO/Europe and EQEC 2011 Conference Digest (Optical Society of America, 2011), paper TF2_3.
  6. M. Petrovich, N. Baddela, N. Wheeler, E. Numkam, R. Slavik, D. Gray, J. Hayes, J. Wooler, F. Poletti, and D. Richardson, “Development of Low Loss, Wide Bandwidth Hollow Core Photonic Bandgap Fibers,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference (Optical Society of America, 2013), paper OTh1J.3. [CrossRef]
  7. S. D. Jackson, “Towards high-power mid-infrared emission from a fibre laser,” Nat. Photonics 6(7), 423–431 (2012). [CrossRef]
  8. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: Current status and future perspectives,” J. Opt. Soc. Am. B 27(11), B63 (2010). [CrossRef]
  9. T. Hoult, J. Gabzdyl, and K. Dzurko, “Fiber Lasers in Solar Applications,” in Solar Energy: New Materials and Nanostructured Devices for High Efficiency (Optical Society of America, 2008), paper STuC3.
  10. P. Kah, J. Lu, J. Martikainen, R. Suoranta, “Remote laser welding with high power fiber lasers,” Engineering 05(09), 700–706 (2013). [CrossRef]
  11. H. Meng, J. Liao, Y. Zhou, Q. Zhang, “Laser micro-processing of cardiovascular stent with fiber laser cutting system,” Opt. Laser Technol. 41(3), 300–302 (2009). [CrossRef]
  12. W. W. Ke, X. J. Wang, X. F. Bao, X. J. Shu, “Thermally induced mode distortion and its limit to power scaling of fiber lasers,” Opt. Express 21(12), 14272–14281 (2013). [CrossRef] [PubMed]
  13. J. Limpert, N. Deguil-Robin, I. Manek-Hönninger, F. Salin, F. Röser, A. Liem, T. Schreiber, S. Nolte, H. Zellmer, A. Tünnermann, J. Broeng, A. Petersson, C. Jakobsen, “High-power rod-type photonic crystal fiber laser,” Opt. Express 13(4), 1055–1058 (2005). [CrossRef] [PubMed]
  14. J. Limpert, O. Schmidt, J. Rothhardt, F. Röser, T. Schreiber, A. Tünnermann, S. Ermeneux, P. Yvernault, F. Salin, “Extended single-mode photonic crystal fiber lasers,” Opt. Express 14(7), 2715–2720 (2006). [CrossRef] [PubMed]
  15. F. Jansen, F. Stutzki, T. Eidam, J. Rothhardt, S. Hädrich, H. Carstens, C. Jauregui, J. Limpert, and A. Tünnermann, “Yb-doped Large Pitch Fiber with 105µm Mode Field Diameter,” in Optical Fiber Communication Conference/National Fiber Optic Engineers Conference, (Optical Society of America, 2011), paper OTuC.
  16. T. A. Birks, J. C. Knight, P. S. Russell, “Endlessly single-mode photonic crystal fiber,” Opt. Lett. 22(13), 961–963 (1997). [CrossRef] [PubMed]
  17. L. Dong, X. Peng, J. Li, “Leakage channel optical fibers with large effective area,” J. Opt. Soc. Am. B 24(8), 1689 (2007). [CrossRef]
  18. L. Dong, T. Wu, H. A. McKay, L. Fu, J. Li, H. G. Winful, “All-glass large-core leakage channel fibers,” IEEE J. Sel. Top. Quantum Electron. 15(1), 47–53 (2009). [CrossRef]
  19. E. M. Dianov, K. M. Golant, V. I. Karpov, R. R. Khrapko, A. S. Kurkov, V. M. Mashinsky, V. N. Protopopov, “Fluorine-doped silica optical fibres fabricated using plasma chemical technologies,” Proc. SPIE 2425, 53–57 (1994). [CrossRef]
  20. S. Dasgupta, J. R. Hayes, C. Baskiotis, and D. J. Richardson, “Novel all-silica large mode area fiber with microstructured cladding element,” in SPIE Photonics West, LASE (San Francisco, 2013).
  21. T. W. Wu, L. Dong, H. Winful, “Bend performance of leakage channel fibers,” Opt. Express 16(6), 4278–4285 (2008). [CrossRef] [PubMed]
  22. D. Marcuse, “Influence of curvature on the losses of doubly clad fibers,” Appl. Opt. 21(23), 4208–4213 (1982). [CrossRef] [PubMed]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.


« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited