OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8585–8597

Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation

Xing Fu, Steven L. Brunton, and J. Nathan Kutz  »View Author Affiliations

Optics Express, Vol. 22, Issue 7, pp. 8585-8597 (2014)

View Full Text Article

Enhanced HTML    Acrobat PDF (2819 KB)

Browse Journals / Lookup Meetings

Browse by Journal and Year


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools



It has been observed that changes in the birefringence, which are difficult or impossible to directly measure, can significantly affect mode-locking in a fiber laser. In this work we develop techniques to estimate the effective birefringence by comparing a test measurement of a given objective function against a learned library. In particular, a toroidal search algorithm is applied to the laser cavity for various birefringence values by varying the waveplate and polarizer angles at incommensurate angular frequencies, thus producing a time-series of the objective function. The resulting time series, which is converted to a spectrogram and then dimensionally reduced with a singular value decomposition, is then labelled with the corresponding effective birefringence and concatenated into a library of modes. A sparse search algorithm (L1-norm optimization) is then applied to a test measurement in order to classify the birefringence of the fiber laser. Simulations show that the sparse search algorithm performs very well in recognizing cavity birefringence even in the presence of noise and/or noisy measurements. Once classified, the wave plates and polarizers can be adjusted using servo-control motors to the optimal positions obtained from the toroidal search. The result is an efficient, self-tuning laser.

© 2014 Optical Society of America

OCIS Codes
(140.3510) Lasers and laser optics : Lasers, fiber
(140.4050) Lasers and laser optics : Mode-locked lasers
(320.7090) Ultrafast optics : Ultrafast lasers

ToC Category:
Lasers and Laser Optics

Original Manuscript: December 18, 2013
Revised Manuscript: March 20, 2014
Manuscript Accepted: March 21, 2014
Published: April 3, 2014

Xing Fu, Steven L. Brunton, and J. Nathan Kutz, "Classification of birefringence in mode-locked fiber lasers using machine learning and sparse representation," Opt. Express 22, 8585-8597 (2014)

Sort:  Author  |  Year  |  Journal  |  Reset  


  1. D. J. Richardson, J. Nilsson, W. A. Clarkson, “High power fiber lasers: current status and future perspectives,” J. Opt. Soc. Am. B 27, B63–B92 (2010). [CrossRef]
  2. C. D. Poole, R. E. Wagner, “Phenomenological approach to polarization dispersion in long single-mode fibers,” Electron. Lett. 22, 1029–1030 (1986). [CrossRef]
  3. C. R. Menyuk, “Pulse propagation in an elliptically birefringent Kerr media,” IEEE J. Quant. Electron. 25, 2674–2682 (1989). [CrossRef]
  4. C. R. Menyuk, “Nonlinear pulse propagation in birefringent optical fibers,” IEEE J. Quant. Electron. 23, 174–176 (1987). [CrossRef]
  5. P. K. A. Wai, C. Menyuk, “Polarization mode dispersion, decorrelation, and diffusion in optical fibers with randomly varying birefringence,” J. Light. Tech. 14, 148–157 (1996). [CrossRef]
  6. J. P. Gordon, H. Kogelnik, “PMD fundamentals: polarization mode dispersion in optical fibers,” PNAS 97, 4541–4550 (2000). [CrossRef] [PubMed]
  7. J. N. Kutz, “Mode-locked soliton lasers,” SIAM Review 48, 629–678 (2006). [CrossRef]
  8. H. A. Haus, “Mode-locking of lasers,” IEEE J. Sel. Top. Quant. Elec. 6, 1173–1185 (2000). [CrossRef]
  9. K. Tamura, E.P. Ippen, H.A. Haus, L.E. Nelson, “77-fs Pulse generation from a stretched-pulse mode-locked all-fiber ring laser,” Opt. Lett. 18, 1080–1082 (1993). [CrossRef] [PubMed]
  10. K. Tamura, M. Nakazawa, “Optimizing power extraction in stretched pulse fiber ring lasers,” App. Phys. Lett. 67, 3691–3693 (1995). [CrossRef]
  11. G. Lenz, K. Tamura, H. A. Haus, E. P. Ippen, “All-solid-state femtosecond source at 1.55 μm,” Opt. Lett. 20, 1289–1291 (1995). [CrossRef] [PubMed]
  12. A. Chong, W. H. Renninger, F. W. Wise, “Properties of normal-dispersion femtosecond fiber lasers,” J. Opt. Soc. Am. B 25, 140–148 (2008). [CrossRef]
  13. A. Chong, J. Buckley, W. Renninger, F. Wise, “All-normal-dispersion femtosecond fiber laser,” Opt. Express 14, 10095 (2006). [CrossRef] [PubMed]
  14. W. Renninger, A. Chong, F. W. Wise, “Dissipative solitons in normal-dispersion fiber lasers,” Phys. Rev. A 77, 023814 (2008). [CrossRef]
  15. F.Ö. Ilday, J. Buckley, F. W. Wise, “Self-similar evolution of parabolic pulses in a laser cavity,” Phys. Rev. Lett. 92, 213902 (2004). [CrossRef]
  16. W. H. Renninger, A. Chong, F. W. Wise, “Self-similar pulse evolution in an all-normal-dispersion laser,” Phys. Rev. A 82, 021805 (2010). [CrossRef]
  17. B. Bale, S. Wabnitz, “Strong spectral filtering for a mode-locked similariton fiber laser,” Opt. Lett. 35, 2466–2468 (2010). [CrossRef] [PubMed]
  18. F. Li, P. K. A. Wai, J. N. Kutz, “Geometrical description of the onset of multi-pulsing in mode-locked laser cavities,” J. Opt. Soc. Am. B 27, 2068–2077 (2010). [CrossRef]
  19. F. Li, E. Ding, J. N. Kutz, P. K. A. Wai, “Dual transmission filters for enhanced energy in mode-locked fiber lasers,” Opt. Express 19, 23408–23419 (2011). [CrossRef] [PubMed]
  20. X. Fu, J. N. Kutz, “High-energy mode-locked fiber lasers using multiple transmission filters and a genetic algorithm,” Opt. Express 21, 6526–6537 (2013). [CrossRef] [PubMed]
  21. S. L. Brunton, X. Fu, J. N. Kutz, “Extremum-seeking control of a mode-locked laser,” IEEE J. Quant. Electron. 49, 852–861 (2013). [CrossRef]
  22. X. Shen, W. Li, M. Yan, H. Zeng, “Electronic control of nonlinear-polarization-rotation mode locking in Yb-doped fiber lasers,” Opt. Lett. 37, 3426–3428 (2012). [CrossRef]
  23. D. Radnatarov, S. Khripunov, S. Kobtsev, A. Ivanenko, S. Kukarin, “Automatic electronic-controlled mode locking self-start in fibre lasers with non-linear polarisation evolution,” Opt. Express 21, 20626–20631 (2013). [CrossRef] [PubMed]
  24. S. Wiggins, Introduction to Applied Nonlinear Dynamical Systems and Chaos, 2, (Springer2003).
  25. J. N. Kutz, Data-Driven Modeling and Scientific Computation (Oxford2013).
  26. J. Wright, A. Yang, A. Ganesh, S. Sastry, Y. Ma, “Robust face recognition via sparse representation,” IEEE Trans. Pattern Ana. Mach. Int. 31, 210–227 (2009). [CrossRef]
  27. D. Needell, J. A. Tropp, “CoSaMP: iterative signal recovery from incomplete and inaccurate samples,” Comm. of the ACM 53, 93–100 (2010). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited