OSA's Digital Library

Optics Express

Optics Express

  • Editor: Andrew M. Weiner
  • Vol. 22, Iss. 7 — Apr. 7, 2014
  • pp: 8617–8623

Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition

Qin Yang, Yanli Li, Zhigao Hu, Zhihua Duan, Peipei Liang, Jian Sun, Ning Xu, and Jiada Wu  »View Author Affiliations


Optics Express, Vol. 22, Issue 7, pp. 8617-8623 (2014)
http://dx.doi.org/10.1364/OE.22.008617


View Full Text Article

Enhanced HTML    Acrobat PDF (1439 KB)





Browse Journals / Lookup Meetings

Browse by Journal and Year


   


Lookup Conference Papers

Close Browse Journals / Lookup Meetings

Article Tools

Share
Citations

Abstract

Heterogenous nanostructures shaped with CdS covered ZnO (ZnO/CdS) core/shell nanorods (NRs) are fabricated on indium-tin-oxide by pulsed laser deposition of CdS on hydrothermally grown ZnO NRs and characterized through morphology examination, structure characterization, photoluminescence and optical absorption measurements. Both the ZnO cores and the CdS shells are hexagonal wurtzite in structure. Compared with bare ZnO NRs, the fabricated ZnO/CdS core/shell NRs present an extended photo-response and have optical properties corresponding to the two excitonic band-gaps of ZnO and CdS as well as the effective band-gap formed between the conduction band minimum of ZnO and the valence band maximum of CdS.

© 2014 Optical Society of America

OCIS Codes
(160.4760) Materials : Optical properties
(300.1030) Spectroscopy : Absorption
(300.6280) Spectroscopy : Spectroscopy, fluorescence and luminescence
(310.1860) Thin films : Deposition and fabrication
(160.4236) Materials : Nanomaterials

ToC Category:
Materials

History
Original Manuscript: January 10, 2014
Revised Manuscript: March 7, 2014
Manuscript Accepted: March 18, 2014
Published: April 3, 2014

Virtual Issues
Vol. 9, Iss. 6 Virtual Journal for Biomedical Optics

Citation
Qin Yang, Yanli Li, Zhigao Hu, Zhihua Duan, Peipei Liang, Jian Sun, Ning Xu, and Jiada Wu, "Extended photo-response of ZnO/CdS core/shell nanorods fabricated by hydrothermal reaction and pulsed laser deposition," Opt. Express 22, 8617-8623 (2014)
http://www.opticsinfobase.org/oe/abstract.cfm?URI=oe-22-7-8617


Sort:  Author  |  Year  |  Journal  |  Reset  

References

  1. J. van Embden, J. Jasieniak, D. E. Gómez, P. Mulvaney, M. Giersig, “Review of the synthetic chemistry involved in the production of core/shell semiconductor nanocrystals,” Aust. J. Chem. 60(7), 457–471 (2007). [CrossRef]
  2. K. Wang, J. J. Chen, W. L. Zhou, Y. Zhang, Y. F. Yan, J. Pern, A. Mascarenhas, “Direct growth of highly mismatched type II ZnO/ZnSe core/shell nanowire arrays on transparent conducting oxide substrates for solar cell applications,” Adv. Mater. 20(17), 3248–3253 (2008). [CrossRef]
  3. Q. Yang, Y. Liu, C. F. Pan, J. Chen, X. N. Wen, Z. L. Wang, “Largely enhanced efficiency in ZnO nanowire/p-polymer hybridized inorganic/organic ultraviolet light-emitting diode by piezo-phototronic effect,” Nano Lett. 13(2), 607–613 (2013). [CrossRef] [PubMed]
  4. S. Mokkapati, D. Saxena, N. Jiang, P. Parkinson, J. Wong-Leung, Q. Gao, H. H. Tan, C. Jagadish, “Polarization tunable, multicolor emission from core-shell photonic III-V semiconductor nanowires,” Nano Lett. 12(12), 6428–6431 (2012). [CrossRef] [PubMed]
  5. S. J. Pearton, D. P. Norton, K. Ip, Y. W. Heo, T. Steiner, “Recent progress in processing and properties of ZnO,” Superlattices Microstruct. 34(1–2), 3–32 (2003). [CrossRef]
  6. M. C. Baykul, N. Orhan, “Band alignment of Cd(1 −x)ZnxS produced by spray pyrolysis method,” Thin Solid Films 518(8), 1925–1928 (2010). [CrossRef]
  7. A. A. Ziabari, F. E. Ghodsi, “Growth, characterization and studying of sol–gel derived CdS nanoscrystalline thin films incorporated in polyethyleneglycol: Effects of post-heat treatment,” Sol. Energy Mater. Sol. Cells 105, 249–262 (2012). [CrossRef]
  8. C. M. Li, T. Ahmed, M. G. Ma, T. Edvinsson, J. F. Zhu, “A facile approach to ZnO/CdS nanoarrays and their photocatalytic and photoelectrochemical properties,” Appl. Catal. B 138, 175−183 (2013).
  9. S. Khanchandani, S. Kundu, A. Patra, A. K. Ganguli, “Shell thickness dependent photocatalytic properties of ZnO/CdS core−shell nanorods,” J. Phys. Chem. C 116(44), 23653–23662 (2012). [CrossRef]
  10. Z. M. Wu, Y. Zhang, J. J. Zheng, X. G. Lin, X. H. Chen, B. W. Huang, H. Q. Wang, K. Huang, S. P. Li, J. Y. Kang, “An all-inorganic type-II heterojunction array with nearly full solar spectral response based on ZnO/ZnSe core/shell nanowires,” J. Mater. Chem. 21(16), 6020–6026 (2011). [CrossRef]
  11. Y. Zhang, M. D. Sturge, K. Kash, A. S. Gozdz, L. T. Florez, J. P. Harbison, “Temperature dependence of luminescence efficiency, exciton transfer, and exciton localization in GaAs/AlxGa1-xAs quantum wires and quantum dots,” Phys. Rev. B Condens. Matter 51(19), 13303–13314 (1995). [CrossRef] [PubMed]
  12. N. Xu, Y. Cui, Z. G. Hu, W. L. Yu, J. Sun, N. Xu, J. D. Wu, “Photoluminescence and low-threshold lasing of ZnO nanorod arrays,” Opt. Express 20(14), 14857–14863 (2012). [CrossRef] [PubMed]
  13. T. C. Damen, S. P. S. Porto, B. Tell, “Raman effect in zinc oxide,” Phys. Rev. 142(2), 570–574 (1966). [CrossRef]
  14. V. Pachauri, C. Subramaniam, T. Pradeep, “Novel ZnO nanostructures over gold and silver nanoparticle assemblies,” Chem. Phys. Lett. 423(1–3), 240–246 (2006). [CrossRef]
  15. R. C. C. Leite, J. F. Scott, T. C. Damen, “Multiple-phonon resonant raman scattering in CdS,” Phys. Rev. Lett. 22(15), 780–782 (1969). [CrossRef]
  16. W. Shan, W. Walukiewicz, J. W. Ager, K. M. Yu, H. B. Yuan, H. P. Xin, G. Cantwell, J. J. Song, “Nature of room-temperature photoluminescence in ZnO,” Appl. Phys. Lett. 86(19), 191911 (2005). [CrossRef]
  17. K. Vanheusden, C. H. Seager, W. L. Warren, D. R. Tallant, J. A. Voigt, “Correlation between photoluminescence and oxygen vacancies in ZnO phosphors,” Appl. Phys. Lett. 68(3), 403–405 (1996). [CrossRef]

Cited By

Alert me when this paper is cited

OSA is able to provide readers links to articles that cite this paper by participating in CrossRef's Cited-By Linking service. CrossRef includes content from more than 3000 publishers and societies. In addition to listing OSA journal articles that cite this paper, citing articles from other participating publishers will also be listed.

Figures

Fig. 1 Fig. 2 Fig. 3
 
Fig. 4 Fig. 5
 

« Previous Article  |  Next Article »

OSA is a member of CrossRef.

CrossCheck Deposited